Full Text

Turn on search term navigation

Copyright © 2020 Tu T. Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper describes the application of two artificial intelligence- (AI-) based methods to predict the 28-day compressive strength of fiber-reinforced high-strength self-compacting concrete (FRHSSCC) from its ingredients. A series of 131 data samples collected from various published literature sources were used for training, validation, and testing models. Various AI models were developed with different training algorithms and a number of nodes in the hidden layer to obtain the optimal model for the FRHSSCC data. It is shown that the performances of the artificial neural network (ANN) were better than that of the adaptive neurofuzzy inference system (ANFIS) model. Specifically, the overall coefficient of determination (R2) of the ANN and ANFIS models was 0.9742 and 0.9584, respectively. The sensitivity analysis was also conducted with the ANN model to investigate the effects of input parameters on the output. The results from the sensitivity analysis revealed that the compressive strength of FRHSSCC at 28 days was more sensitive with the changes of water by cement ratio (WCR) parameter and insensitive with varying amounts of fiber (VOF). Finally, it can be concluded that the application of artificial intelligence shows the great potential in the prediction of compressive strength of FRHSSCC.

Details

Title
Compressive Strength Evaluation of Fiber-Reinforced High-Strength Self-Compacting Concrete with Artificial Intelligence
Author
Nguyen, Tu T 1   VIAFID ORCID Logo  ; Hoa Pham Duy 2 ; Tung Pham Thanh 3 ; Hoang Hiep Vu 1 

 Faculty of Civil Engineering, Hanoi Architectural University, Hanoi, Vietnam 
 Faculty of Bridge and Roads, National University of Civil Engineering, Hanoi, Vietnam 
 Faculty of Building and Industrial Construction, National University of Civil Engineering, Hanoi, Vietnam 
Editor
Weerachart Tangchirapat
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2456403992
Copyright
Copyright © 2020 Tu T. Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/