Full text

Turn on search term navigation

© 2020 Luo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The past nine months witnessed COVID-19's fast-spreading at the global level. Limited by medical resources shortage and uneven facilities distribution, online help-seeking becomes an essential approach to cope with public health emergencies for many ordinaries. This study explores the driving forces behind the retransmission of online help-seeking posts. We built an analytical framework that emphasized content characteristics, including information completeness, proximity, support seeking type, disease severity, and emotion of help-seeking messages. A quantitative content analysis was conducted with a probability sample consisting of 727 posts. The results illustrate the importance of individual information completeness, high proximity, instrumental support seeking. This study also demonstrates slight inconformity with the severity principle but stresses the power of anger in help-seeking messages dissemination. As one of the first online help-seeking diffusion analyses in the COVID-19 period, our research provides a reference for constructing compelling and effective help-seeking posts during a particular period. It also reveals further possibilities for harnessing social media’s power to promote reciprocal and cooperative actions as a response to this deepening global concern.

Details

Title
What triggers online help-seeking retransmission during the COVID-19 period? Empirical evidence from Chinese social media
Author
Chen, Luo; Li, Yuru; Chen, Anfan; Tang, Yulong
First page
e0241465
Section
Research Article
Publication year
2020
Publication date
Nov 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2457264111
Copyright
© 2020 Luo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.