Full text

Turn on search term navigation

This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Harmonia axyridis is an invasive alien ladybird in North America and Europe. Studies show that multiple natural enemies are using Ha. axyridis as a new host. However, thus far, no research has been undertaken to study the effects of simultaneous infection by multiple natural enemies on Ha. axyridis. We hypothesized that high thallus densities of the ectoparasitic fungus Hesperomyces virescens on a ladybird weaken the host’s defenses, thereby making it more susceptible to infection by other natural enemies. We examined mortality of the North American-native Olla v-nigrum and Ha. axyridis co-infected with He. virescens and an entomopathogenic fungus—either Beauveria bassiana or Metarhizium brunneum. Laboratory assays revealed that He. virescens-infected O. v-nigrum individuals are more susceptible to entomopathogenic fungi, but Ha. axyridis does not suffer the same effects. This is in line with the enemy release hypothesis, which predicts that invasive alien species in new geographic areas experience reduced regulatory effects from natural enemies compared to native species. Considering our results, we can ask how He. virescens affects survival when confronted by other pathogens that previously had little impact on Ha. axyridis.

Details

Title
Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi
Author
Haelewaters, Danny; Hiller, Thomas; Kemp, Emily A; VanWielink, Paul S; Shapiro-Ilan, David I; Aime, M Catherine; Nedvěd, Oldřich; Pfister, Donald H; Cottrell, Ted E
Publication year
2020
Publication date
Nov 4, 2020
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2457421769
Copyright
This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.