Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Decadal trends and interannual variations in the hydroxyl radical (OH), while poorly constrained at present, are critical for understanding the observed evolution of atmospheric methane (CH4). Through analyzing the OH fields simulated by the model ensemble of the Chemistry–Climate Model Initiative (CCMI), we find (1) the negative OH anomalies during the El Niño years mainly corresponding to the enhanced carbon monoxide (CO) emissions from biomass burning and (2) a positive OH trend during 1980–2010 dominated by the elevated primary production and the reduced loss of OH due to decreasing CO after 2000. Both two-box model inversions and variational 4D inversions suggest that ignoring the negative anomaly of OH during the El Niño years leads to a large overestimation of the increase in global CH4 emissions by up to 10 ± 3 Tg yr-1 to match the observed CH4 increase over these years. Not accounting for the increasing OH trends given by the CCMI models leads to an underestimation of the CH4 emission increase by 23 ± 9 Tg yr-1 from 1986 to 2010. The variational-inversion-estimated CH4 emissions show that the tropical regions contribute most to the uncertainties related to OH. This study highlights the significant impact of climate and chemical feedbacks related to OH on the top-down estimates of the global CH4 budget.

Details

Title
On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget
Author
Zhao, Yuanhong 1 ; Saunois, Marielle 1 ; Bousquet, Philippe 1 ; Lin, Xin 2   VIAFID ORCID Logo  ; Berchet, Antoine 1   VIAFID ORCID Logo  ; Hegglin, Michaela I 3   VIAFID ORCID Logo  ; Canadell, Josep G 4   VIAFID ORCID Logo  ; Jackson, Robert B 5   VIAFID ORCID Logo  ; Deushi, Makoto 6 ; Jöckel, Patrick 7   VIAFID ORCID Logo  ; Kinnison, Douglas 8 ; Kirner, Ole 9   VIAFID ORCID Logo  ; Strode, Sarah 10   VIAFID ORCID Logo  ; Tilmes, Simone 8 ; Dlugokencky, Edward J 11 ; Zheng, Bo 1   VIAFID ORCID Logo 

 Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France 
 Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France; now at: Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA 
 Department of Meteorology, University of Reading, Earley Gate, Reading, RG6 6BB, United Kingdom 
 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory 2601, Australia 
 Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA, USA 
 Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan 
 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany 
 Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO, USA 
 Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany 
10  NASA Goddard Space Flight Center, Greenbelt, MD, USA; GESTAR, Universities Space Research Association (USRA), Columbia, MD, USA 
11  Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USA 
Pages
13011-13022
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2457926623
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.