It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Land transformation is one of the most significant human changes on the Earth’s surface processes. Therefore, land use land cover time series are a key input for environmental monitoring, natural resources management, territorial planning enforcement at national scale. We here capitalize from the MapBiomas initiative to characterize land use land cover (LULC) change in the Gran Chaco between 2010 and 2017. Specifically we sought to a) quantify annual changes in the main LULC classes; b) identify the main LULC transitions and c) relate these transitions to current land use policies. Within the MapBiomas project, Landsat based annual maps depicting natural woody vegetation, natural herbaceous vegetation, dispersed natural vegetation, cropland, pastures, bare areas and water. We used Random Forest machine learning algorithms trained by samples produced by visual interpretation of high resolution images. Annual overall accuracy ranged from 0,73 to 0,74. Our results showed that, between 2010 and 2017, agriculture and pasture lands increased ca. 3.7 Mha while natural forestry decreased by 2.3 Mha. Transitions from forests to agriculture accounted for 1.14% of the overall deforestation while 86% was associated to pastures and natural herbaceous vegetation. In Argentina, forest loss occurred primarily (39%) on areas non considered by the territorial planning Law, followed by medium (33%), high (19%) and low (9%) conservation priority classes. These results illustrate the potential contribution of remote sensing to characterize complex human environmental interactions occurring over extended areas and timeframes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Instituto de Clima y Agua, Instituto Nacional de Tecnología Agropecuaria (INTA) Hurlingham, Argentina; Instituto de Clima y Agua, Instituto Nacional de Tecnología Agropecuaria (INTA) Hurlingham, Argentina
2 Estación Experimental Salta, Instituto Nacional de Tecnología Agropecuaria (INTA) Salta, Argentina; Estación Experimental Salta, Instituto Nacional de Tecnología Agropecuaria (INTA) Salta, Argentina
3 Asociación Guyra Paraguay, Asunción, Paraguay; Asociación Guyra Paraguay, Asunción, Paraguay