Full text

Turn on search term navigation

Copyright © 2020 Yixiu Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

The accuracy of feedforward control model including system time-delay significantly affects the position tracking performance in a precision motion system. In this paper, an iterative tuning method for feedforward control with precise time-delay compensation is proposed. First, considering system time-delay from actuator, sensor, calculation, and communication in real platform, a feedforward control model with time-delay compensation is established, and a nonlinear objective function with time-delay is designed based on the measured data of a finite time task, to minimize the position tracking error. Second, in order to deal with both the nonlinear objective function and also unknown disturbances and noise in the real system, an optimization strategy combining the Gauss–Newton iterative (GNI) scheme and instrumental variable (IV) is proposed to realize the unbiased estimation of the feedforward parameters and precise delay time. Finally, with the identified feedforward control parameters, the precise system time-delay which is a nonintegral multiple of the sampling period is compensated accurately for the feedforward control with accurate path planning time-shift in the implementation. The effectiveness of the proposed feedforward parameter tuning and precise time-delay compensation scheme is verified by the simulation and also experimental result on a precision motion platform with obvious position tracking performance improvement.

Details

Title
Iterative Tuning of Feedforward Controller with Precise Time-Delay Compensation for Precision Motion System
Author
Sun, Yixiu 1 ; Li, Xiaoqing 1 ; Luo, Ying 1 ; Chen, Xuedong 1 ; Zeng, Lizhan 1   VIAFID ORCID Logo 

 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China 
Editor
Jose Vicente Salcedo
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2458476123
Copyright
Copyright © 2020 Yixiu Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/