Abstract
The regeneration capacity of cardiomyocytes (CMs) is retained in neonatal mouse hearts but is limited in adult mouse hearts. Myocardial infarction (MI) in adult hearts usually leads to the loss of large amounts of cardiac tissue, and then accelerates the process of cardiac remodeling and heart failure. Therefore, it is necessary to explore the potential mechanisms of CM regeneration in the neonates and develop potential therapies aimed at promoting CM regeneration and cardiac repair in adults. Currently, studies indicate that a number of mechanisms are involved in neonatal endogenous myocardial regeneration, including cell cycle regulators, transcription factors, non-coding RNA, signaling pathways, acute inflammation, hypoxia, protein kinases, and others. Understanding the mechanisms of regeneration in neonatal CMs after MI provides theoretical support for the studies related to the promotion of heart repair after MI in adult mammals. However, several difficulties in the study of CM regeneration still need to be overcome. This article reviews the potential mechanisms of endogenous CM regeneration in neonatal mouse hearts and discusses possible therapeutic targets and future research directions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer