Full text

Turn on search term navigation

© 2020 Ostrakhovitch et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The efficiency of cell reprogramming in two-dimensional (2D) cultures is limited. Given that cellular stemness is intimately related to microenvironmental changes, 3D cell cultures have the potential of overcoming this limited capacity by allowing cells to self-organize by aggregation. In 3D space, cells interact more efficiently, modify their cellular topology, gene expression, signaling, and metabolism. It is yet not clear as how 3D culture environments modify the reprogramming potential of fibroblasts. We demonstrate that 3D spheroids from dermal fibroblasts formed under ultra-low attachment conditions showed increased lactate production. This is a requisite for cell reprogramming, increase their expression of pluripotency genes, such as OCT4, NANOG and SOX2, and display upregulated cystathionine-β-synthase (CBS) and hydrogen sulfide (H2S) production. Knockdown of CBS by RNAi suppresses lactic acid and H2S production and concomitantly decreases the expression of OCT4 and NANOG. On the contrary, H2S donors, NaHS and garlic-derived diallyl trisulfide (DATS), promote the expression of OCT4, and support osteogenic trans-differentiation of fibroblasts. These results demonstrate that CBS mediated release of H2S regulates the reprogramming of dermal fibroblasts grown in 3D cultures and supports their trans-differentiation.

Details

Title
Hydrogen sulfide facilitates reprogramming and trans-differentiation in 3D dermal fibroblast
Author
Ostrakhovitch, Elena A; Shin Akakura; Tabibzadeh, Siamak
First page
e0241685
Section
Research Article
Publication year
2020
Publication date
Nov 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2460089981
Copyright
© 2020 Ostrakhovitch et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.