It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Occupancy analyses represent a crucial topic for building performance. At present, this is even true because of the pandemic emergency due to SARS-CoV-2 and the need to support the functional analysis of building spaces in relation to social distancing rules. Moreover, the need to assess the suitability of spaces in high occupancy buildings as the educational ones, for which occupancy evaluations result pivotal to ensure the safety of the end-users in their daily activities, is a priority. The proposed paper investigates the steps that are needed to secure a safe re-opening of an educational building. A case study has been selected as a test site to analyse the re-opening steps as required by Italian protocols and regulations. This analysis supported the school director of a 2-to-10 year old school and its team in the decision-making process that led to the safe school re-opening. Available plants and elevations of the building were collected and a fast digital survey was carried out using the mobile laser scanner technology (iMMS - Indoor Mobile Mapping System) in order to acquire three-dimensional geometries and digital photographic documentation of the spaces. A crowd simulation software (i.e. Oasys MassMotion) was implemented to analyse end-users flows; the social distance parameter was set in its proximity modelling tools in order to check the compliance of spaces and circulation paths to the social distancing protocols. Contextually to the analysis of users flows, a plan of hourly air changes to maintain a high quality of the environments has been defined.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dept. of Civil, Architectural, Environmental Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy; Dept. of Civil, Architectural, Environmental Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy
2 Dept. of Civil, Construction and Environmental Engineering, Sapienza University of Rome, 00184 Roma, Italy; Dept. of Civil, Construction and Environmental Engineering, Sapienza University of Rome, 00184 Roma, Italy
3 Dept. of Mechanical Engineering, Politecnico di Milano, 20133 Milano, Italy; Dept. of Mechanical Engineering, Politecnico di Milano, 20133 Milano, Italy