It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Established rheumatoid arthritis (RA) patients display differentially expressed genes coding for cytokine/chemokine-mediated immunity compared to healthy controls. It is unclear, however, if in the pre-arthritis phase of clinically suspect arthralgia (CSA) expression of immune genes differ between patients who do or do not develop clinically evident inflammatory arthritis (IA).
Methods
Two hundred thirty-six consecutive patients presenting with arthralgia clinically suspected for progression to RA were followed until IA development or else for median 24 months (IQR 12–26). Baseline whole blood RNA expression was determined for a previously identified set of 133 genes associated with the innate and adaptive immune system by dual-color reverse-transcription multiplex ligation-dependent probe amplification (dcRT-MLPA) profiling. Cox proportional hazard models were used.
Results
Twenty percent of CSA patients developed IA. After correction for multiple testing, expression levels of six genes (IFNG, PHEX, IGF-1, IL-7R, CD19, CCR7) at the time of presentation were associated with progression to IA. PHEX and IGF-1 were highly correlated with each other (ρ = 0.97). In multivariable analysis correcting for the different genes, expressions of IL-7R and IGF-1 were independently associated with IA development (p = 0.025, p = 0.046, respectively). Moreover, IL-7R and IGF-1 remained significantly associated even after correction for known predictors (ACPA, CRP, imaging-detected subclinical joint inflammation; p = 0.039, p = 0.005, respectively). These genes are also associated with RA development.
Conclusions
IL-7R and IGF-1 were differentially expressed between CSA patients who did or did not progress to IA, independent from regularly used predictors. These biomarkers may become helpful in prognostication of CSA patients. Furthermore, because both genes are associated with T cell functioning, T cell dysregulation may mediate progression from arthralgia to arthritis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer