It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In recent years, the identification of genetic and phenotypic biomarkers of cancer for prevention, early diagnosis and patient stratification has been a main objective of research in the field. Different multivariable models that use biomarkers have been proposed for the evaluation of individual risk of developing breast cancer.
Methods
This is a case control study based on a population-based cohort. We describe and evaluate a multivariable model that incorporates 92 Single-nucleotide polymorphisms (SNPs) (Supplementary Table S1) and five different phenotypic variables and which was employed in a Spanish population of 642 healthy women and 455 breast cancer patients.
Results
Our model allowed us to stratify two groups: high and low risk of developing breast cancer. The 9th decile included 1% of controls vs 9% of cases, with an odds ratio (OR) of 12.9 and a p-value of 3.43E-07. The first decile presented an inverse proportion: 1% of cases and 9% of controls, with an OR of 0.097 and a p-value of 1.86E-08.
Conclusions
These results indicate the capacity of our multivariable model to stratify women according to their risk of developing breast cancer. The major limitation of our analysis is the small cohort size. However, despite the limitations, the results of our analysis provide proof of concept in a poorly studied population, and opens up the possibility of using this method in the routine screening of the Spanish population.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer