It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Exposure to environmental stressors can lead to shorter leukocyte telomere length and increase the risk of chronic diseases. Preservation of leukocyte telomere length by reducing oxidative stress exposure and reinforcing immunity may be a mechanism by which nutritional factors delay or prevent chronic disease development.
Methods
Healthy pregnant women (aged 18–45 years) at 9–15 weeks of gestation living in Gasabo District, Kigali, Rwanda, were recruited from 10 health centers for a prospective, longitudinal study from September to October 2017 to determine possible associations between nutrition health, infectious disease and leukocyte telomere length. Anthropometric and laboratory measurements were performed using standard procedures; sociodemographic parameters and health histories were assessed via surveys, and leukocyte telomere length was assessed using quantitative PCR expressed as the ratio of a telomeric product to a single-copy gene product (T/S).
Results
Mean gestational age of participants (n = 297) at enrollment was 13.04 ± 3.50 weeks, age was 28.16 ± 6.10 years and leukocyte telomere length was 1.16 ± 0.22 (T/S). Younger age; no schooling vs. primary schooling; and lower levels of ferritin, soluble transferrin receptors and retinol-binding protein were independent predictors of longer telomere length in multivariable models.
Conclusions
Leukocyte telomere length is an indicator of biological aging in pregnant Rwandan women. Maternal micronutrient status, specifically lower ferritin, soluble transferrin receptor levels, and retinol-binding protein levels were associated with longer maternal telomere length in contrast with some studies from North America and Europe. There were no associations between inflammation and infectious disease status and maternal leukocyte telomere length. Further studies are needed to enhance our understanding of the interplay between maternal nutritional status and infectious disease in relation to leukocyte telomere length in developing countries.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer