Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Barium titanate (BaTiO3) nanoparticles (BT NPs) have shown exceptional characteristics such as high dielectric constant and suitable ferro-, piezo-, and pyro-electric properties. Thus, BT NPs have shown potential to be applied in various fields including electro-optical devices and biomedicine. However, very limited knowledge is available on the interaction of BT NPs with human cells. This work was planned to study the interaction of BT NPs with human lung carcinoma (A549) cells. Results showed that BT NPs decreased cell viability in a dose- and time-dependent manner. Depletion of mitochondrial membrane potential and induction of caspase-3 and -9 enzyme activity were also observed following BT NP exposure. BT NPs further induced oxidative stress indicated by induction of pro-oxidants (reactive oxygen species and hydrogen peroxide) and reduction of antioxidants (glutathione and several antioxidant enzymes). Moreover, BT NP-induced cytotoxicity and oxidative stress were effectively abrogated by N-acetyl-cysteine (an ROS scavenger), suggesting that BT NP-induced cytotoxicity was mediated through oxidative stress. Intriguingly, the underlying mechanism of cytotoxicity of BT NPs was similar to the mode of action of ZnO NPs. At the end, we found that BT NPs did not affect the non-cancerous human lung fibroblasts (IMR-90). Altogether, BT NPs selectively induced cytotoxicity in A549 cells via oxidative stress. This work warrants further research on selective cytotoxicity mechanisms of BT NPs in different types of cancer cells and their normal counterparts.

Details

Title
Barium Titanate (BaTiO3) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells
First page
2309
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2464498574
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.