It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background field methods offer an approach through which fundamental non-perturbative hadronic properties can be studied. Lattice QCD is the only ab initio method with which Quantum Chromodynamics can be studied at low energies; it involves numerically calculating expectation values in the path integral formalism. This requires substantial investment in high performance supercomputing resources. A particular challenge of lattice QCD is isolating the desired state, rather than a superposition of excited states. While extensive work has been performed which allows the ground state to be identified in lattice QCD calculations, this remains a challenging proposition for the ground state in the presence of a uniform magnetic field field. Quark level projection operators are introduced to resolve this challenge and thus allow for extraction of the magnetic polarisability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





