It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Diabetic retinopathy (DR) is a disease with an increasing prevalence and the major reason for blindness among working-age population. The possibility of severe vision loss can be extensively reduced by timely diagnosis and treatment. An automated screening for DR has been identified as an effective method for early DR detection, which can decrease the workload associated to manual grading as well as save diagnosis costs and time. Several studies have been carried out to develop automated detection and classification models for DR. This paper presents a new IoT and cloud-based deep learning for healthcare diagnosis of Diabetic Retinopathy (DR). The proposed model incorporates different processes namely data collection, preprocessing, segmentation, feature extraction and classification. At first, the IoT-based data collection process takes place where the patient wears a head mounted camera to capture the retinal fundus image and send to cloud server. Then, the contrast level of the input DR image gets increased in the preprocessing stage using Contrast Limited Adaptive Histogram Equalization (CLAHE) model. Next, the preprocessed image is segmented using Adaptive Spatial Kernel distance measure-based Fuzzy C-Means clustering (ASKFCM) model. Afterwards, deep Convolution Neural Network (CNN) based Inception v4 model is applied as a feature extractor and the resulting feature vectors undergo classification in line with the Gaussian Naive Bayes (GNB) model. The proposed model was tested using a benchmark DR MESSIDOR image dataset and the obtained results showcased superior performance of the proposed model over other such models compared in the study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer