Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Generative models for images, audio, text, and other low-dimension data have achieved great success in recent years. Generating artificial human movements can also be useful for many applications, including improvement of data augmentation methods for human gesture recognition. The objective of this research is to develop a generative model for skeletal human movement, allowing to control the action type of generated motion while keeping the authenticity of the result and the natural style variability of gesture execution. We propose to use a conditional Deep Convolutional Generative Adversarial Network (DC-GAN) applied to pseudo-images representing skeletal pose sequences using tree structure skeleton image format. We evaluate our approach on the 3D skeletal data provided in the large NTU_RGB+D public dataset. Our generative model can output qualitatively correct skeletal human movements for any of the 60 action classes. We also quantitatively evaluate the performance of our model by computing Fréchet inception distances, which shows strong correlation to human judgement. To the best of our knowledge, our work is the first successful class-conditioned generative model for human skeletal motions based on pseudo-image representation of skeletal pose sequences.

Details

Title
Generative Model for Skeletal Human Movements Based on Conditional DC-GAN Applied to Pseudo-Images
Author
Wang, Xi 1   VIAFID ORCID Logo  ; Devineau, Guillaume 2 ; Moutarde, Fabien 2   VIAFID ORCID Logo  ; Yang, Jie 1 

 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (W.X.); [email protected] (J.Y.) 
 Centre de Robotique, MINES ParisTech, Université PSL, 75006 Paris, France; [email protected] 
First page
319
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2468004803
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.