Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tailings flows result from the breach of tailings dams. Large-scale tailings flows can travel over substantial distances with high velocities and cause significant loss of life, environmental damage, and economic costs. Runout modelling and inundation mapping are critical components of risk assessment for tailings dams. In an attempt to develop consistency in reporting tailings data, we established a new tailings-flow runout classification system. Our data analysis applies to the zone corresponding to the extent of the main solid tailings deposit, which is characterized by visible or field-confirmed sedimentation, above typical surface water levels if extending into downstream water bodies. We introduced a new database of 33 tailings dam breaches by independently estimating the planimetric inundation area for each event using remote sensing data. This paper examines the applicability of a semi-physical area–volume relationship using the new database. Our results indicate that the equation A= cV2/3, which has been used previously to characterize the mobility of other types of mass movements, is a statistically justifiable choice for the relationship between total released volume and planimetric inundation area. Our analysis suggests that, for a given volume, tailings flows are, on average, less mobile than lahars but more mobile than non-volcanic debris flows, rock avalanches, and waste dump failures.

Details

Title
Tailings-flow runout analysis: examining the applicability of a semi-physical area–volume relationship using a novel database
Author
Ghahramani, Negar 1 ; Mitchell, Andrew 1   VIAFID ORCID Logo  ; Rana, Nahyan M 2 ; McDougall, Scott 1 ; Evans, Stephen G 2 ; Take, W Andy 3   VIAFID ORCID Logo 

 Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada 
 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, N2L 3G1, Canada 
 Department of Civil Engineering, Queen's University, Kingston, K7L 3N6, Canada 
Pages
3425-3438
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
15618633
e-ISSN
16849981
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2469718590
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.