It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Vectorial optical fields (VOFs) exhibiting tailored wave fronts and spatially inhomogeneous polarization distributions are particularly useful in photonic applications. However, devices to generate them, made by natural materials or recently proposed metasurfaces, are either bulky in size or less efficient, or exhibit restricted performances. Here, we propose a general approach to design metadevices that can efficiently generate two distinct VOFs under illuminations of circularly polarized lights with different helicity. After illustrating our scheme via both Jones matrix analyses and analytical model calculations, we experimentally demonstrate two metadevices in the near-infrared regime, which can generate vortex beams carrying different orbital angular momenta yet with distinct inhomogeneous polarization distributions. Our results provide an ultracompact platform for bifunctional generations of VOFs, which may stimulate future works on VOF-related applications in integration photonics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer