Abstract

Vectorial optical fields (VOFs) exhibiting tailored wave fronts and spatially inhomogeneous polarization distributions are particularly useful in photonic applications. However, devices to generate them, made by natural materials or recently proposed metasurfaces, are either bulky in size or less efficient, or exhibit restricted performances. Here, we propose a general approach to design metadevices that can efficiently generate two distinct VOFs under illuminations of circularly polarized lights with different helicity. After illustrating our scheme via both Jones matrix analyses and analytical model calculations, we experimentally demonstrate two metadevices in the near-infrared regime, which can generate vortex beams carrying different orbital angular momenta yet with distinct inhomogeneous polarization distributions. Our results provide an ultracompact platform for bifunctional generations of VOFs, which may stimulate future works on VOF-related applications in integration photonics.

Details

Title
High-efficiency metadevices for bifunctional generations of vectorial optical fields
Author
Wang, Dongyi; Liu, Tong; Zhou, Yuejiao; Zheng, Xiaoying; Sun, Shulin; He, Qiong; Zhou, Lei
Pages
685-695
Publication year
2021
Publication date
2021
Publisher
Walter de Gruyter GmbH
ISSN
21928606
e-ISSN
21928614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2469849461
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.