Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study investigated the diagnostic accuracy of using an artificial neural network (ANN) for the prediction of metabolic syndrome (MetS) based on socioeconomic status and lifestyle factors. The data of 27,415 subjects who went through examinations and answered questionnaires during three stages from 2006 to 2014 at a health institute in Taiwan were collected and analyzed. The repeated measurements over time were set as predictive factors and used to train and test an ANN for MetS prediction. Among the subjects, 18.3%, 24.6%, and 30.1% were diagnosed with MetS during the respective three stages. ANN analysis applied with an over-sampling technique performed with an area under the curve (AUC) of up to 0.93 based on different models. The over-sampling technique helped improve prediction performance in terms of sensitivity and F2 measures. The results indicated that waist circumference, socioeconomic status (SES), and lifestyle factors can be utilized in a non-invasive screening tool to assist health workers in making primary care decisions when MetS is suspected. By predicting the occurrence of MetS, individuals or healthcare professionals can then develop preventive strategies in time, thus enhancing the effectiveness of health promotion.

Details

Title
The Utility of Artificial Neural Networks for the Non-Invasive Prediction of Metabolic Syndrome Based on Personal Characteristics
Author
Feng-Hsu, Wang 1   VIAFID ORCID Logo  ; Lin, Chih-Ming 2   VIAFID ORCID Logo 

 Department of Computer Science and Information Engineering, Ming Chuan University, Taoyuan 333, Taiwan; [email protected] 
 Department of Healthcare Information and Management, Ming Chuan University, Taoyuan 333, Taiwan 
First page
9288
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2470411356
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.