It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies.
Results
We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD.
Conclusions
Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer