It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Multiple longitudinal responses together with time-to-event outcome are common in biomedical studies. There are several instances where the longitudinal responses are correlated with each other and at the same time each longitudinal response is associated with the survival outcome. The main purpose of this study is to present and explore a joint modeling approach for multiple correlated longitudinal responses and a survival outcome. The method will be illustrated using the Jackson Heart Study (JHS), which is one of the largest cardiovascular studies among African Americans.
Methods
Four longitudinal responses, i.e., total cholesterol (TC), high density lipoprotein (HDL) cholesterol, triglyceride (TG) and inflammation measured by high-sensitivity C-reactive protein (hsCRP); and time-to-coronary heart disease (CHD) were considered from the JHS. The repeated lipid and hsCRP measurements from a given subject overtime are likely correlated with each other and could influence the subject’s risk for CHD. A joint modeling framework is considered. To deal with the high dimensionality due to the multiple longitudinal profiles, we use a pairwise bivariate model fitting approach that was developed in the context of multivariate Gaussian random effects models. The method is further explored through simulations.
Results
The proposed model performed well in terms of bias and relative efficiency. The JHS data analysis showed that lipid and hsCRP trajectories could exhibit interdependence in their joint evolution and have impact on CHD risk.
Conclusions
We applied a unified and flexible joint modeling approach to analyze multiple correlated longitudinal responses and survival outcome. The method accounts for the correlation among the longitudinal responses as well as the association between each longitudinal response and the survival outcome at once. This helps to explore how the combination of multiple longitudinal trajectories could be related to the survival process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer