Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Energy, precision, and multi-functionality have become primary considerations in incubators. For example, if a part of an apparatus must be insulated, while other parts do not, then the specific part can be placed in the multi-functional incubator proposed in this paper to avoid wasting energy. The proposed incubator is composed of various parts including a platform, which is provided for debugging parts to meet the working accuracy of parts. The light windows are adjustable in height to accommodate different heights of light. The incubator is black to prevent stray light in optical experiments. This design can not only insulate but also debug optical or non-optical parts according working accuracy of parts. In this paper, an example incubator is used for an optical experiment was given and the incubator was optimized several times. The temperature fluctuations of the box of the third optimized incubator reached0.045∘C. To reduce the temperature fluctuations, the relationship between the ambient and target temperature as well as the temperature fluctuations of the box were analyzed, and a formula was proposed. A further experiment provided evidence for this relationship. Based on the formula, the SLITA (small optimized incubator placed in large optimized incubator with the same target temperature) method for improving insulation accuracy was further proposed, and an incubator was designed using this method. The temperature fluctuations were0.000014∘Cby simulation, which was reduced 98.6% compared to previous incubators.

Details

Title
A Multifunctional Combination Incubator
First page
6622
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471226244
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.