Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increasing use of unmanned aerial vehicles (UAV) and high spatial resolution imagery from associated sensors necessitates the continued advancement of efficient means of image processing to ensure these tools are utilized effectively. This is exemplified in the field of forest management, where the extraction of individual tree crown information stands to benefit operational budgets. We explored training a region-based convolutional neural network (Mask R-CNN) to automatically delineate individual tree crown (ITC) polygons in regenerating forests (14 years after harvest) using true colour red-green-blue (RGB) imagery with an average ground sampling distance (GSD) of 3 cm. We predicted ITC polygons to extract height information using canopy height models generated from digital aerial photogrammetric (DAP) point clouds. Our approach yielded an average precision of 0.98, an average recall of 0.85, and an average F1 score of 0.91 for the delineation of ITC. Remote height measurements were strongly correlated with field height measurements (r2 = 0.93, RMSE = 0.34 m). The mean difference between DAP-derived and field-collected height measurements was −0.37 m and −0.24 m for white spruce (Picea glauca) and lodgepole pine (Pinus contorta), respectively. Our results show that accurate ITC delineation in young, regenerating stands is possible with fine-spatial resolution RGB imagery and that predicted ITC can be used in combination with DAP to estimate tree height.

Details

Title
Automatic Delineation and Height Measurement of Regenerating Conifer Crowns under Leaf-Off Conditions Using UAV Imagery
First page
4104
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471352208
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.