It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Earthquake early warning (EEW) can be used to detect earthquakes and provide advanced notification of strong shaking, allowing pre-emptive actions to be taken that not only benefit infrastructure but reduce injuries and fatalities. Currently Aotearoa New Zealand does not have a nationwide EEW system, so a survey of the public was undertaken to understand whether EEW was considered useful and acceptable by the public, as well as perceptions of how and when such warnings should be communicated, before making an investment in such technology. We surveyed the public’s perspectives (N = 3084) on the usefulness of EEW, preferred system attributes, and what people anticipated doing on receipt of a warning. We found strong support for EEW, for the purposes of being able to undertake actions to protect oneself and others (e.g. family, friends, and pets), and to mentally prepare for shaking. In terms of system attributes, respondents expressed a desire for being warned at a threshold of shaking intensity MM5–6. They suggested a preference for receiving a warning via mobile phone, supported by other channels. In addition to being warned about impending shaking, respondents wanted to receive messages that alerted them to other attributes of the earthquake (including the possibility of additional hazards such as tsunami), and what actions to take. People’s anticipated actions on receipt of a warning varied depending on the time available from the warning to arrival of shaking. People were more likely to undertake quicker and easier actions for shorter timeframes of <10 s (e.g., stop, mentally prepare, take protective action), and more likely to move to a nearby safe area, help others, look for more information, or take safety actions as timeframes increased. Given the public endorsement for EEW, information from this survey can be used to guide future development in Aotearoa New Zealand and internationally with respect to system attributes, sources, channels and messages, in ways that promote effective action.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Massey University, Joint Centre for Disaster Research, Wellington, New Zealand (GRID:grid.148374.d) (ISNI:0000 0001 0696 9806)
2 GNS Science, Lower Hutt, New Zealand (GRID:grid.15638.39)
3 Doshisha University, Faculty of Psychology, Kyotanabe-shi, Japan (GRID:grid.255178.c) (ISNI:0000 0001 2185 2753)
4 United States Geological Survey, Menlo Park, USA (GRID:grid.2865.9) (ISNI:0000000121546924)