Abstract

Single-cell RNA-sequencing (scRNA-Seq) is a compelling approach to directly and simultaneously measure cellular composition and state, which can otherwise only be estimated by applying deconvolution methods to bulk RNA-Seq estimates. However, it has not yet become a widely used tool in population-scale analyses, due to its prohibitively high cost. Here we show that given the same budget, the statistical power of cell-type-specific expression quantitative trait loci (eQTL) mapping can be increased through low-coverage per-cell sequencing of more samples rather than high-coverage sequencing of fewer samples. We use simulations starting from one of the largest available real single-cell RNA-Seq data from 120 individuals to also show that multiple experimental designs with different numbers of samples, cells per sample and reads per cell could have similar statistical power, and choosing an appropriate design can yield large cost savings especially when multiplexed workflows are considered. Finally, we provide a practical approach on selecting cost-effective designs for maximizing cell-type-specific eQTL power which is available in the form of a web tool.

Single cell RNA-sequencing can be a powerful approach to characterizing cell composition in a population of cells but is thought to be too expensive for population-scale analyses. Here, the authors show how lower coverage of more samples can increase the power to detect cell-type-specific eQTL.

Details

Title
Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis
Author
Mandric Igor 1   VIAFID ORCID Logo  ; Schwarz Tommer 2 ; Majumdar Arunabha 3 ; Hou Kangcheng 2   VIAFID ORCID Logo  ; Briscoe, Leah 2 ; Perez, Richard 4 ; Subramaniam Meena 5 ; Hafemeister Christoph 6 ; Satija Rahul 7   VIAFID ORCID Logo  ; Ye Chun Jimmie 5   VIAFID ORCID Logo  ; Pasaniuc Bogdan 8 ; Halperin Eran 9   VIAFID ORCID Logo 

 University of California Los Angeles, Department of Computer Science, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 David Geffen School of Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California San Francisco, Institute for Human Genetics, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of California San Francisco, Bakar Computational Health Sciences Institute, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 University of California San Francisco, Institute for Human Genetics, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of California San Francisco, Bakar Computational Health Sciences Institute, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); Bioinformatics Program, University of California San Francisco, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 New York Genome Center, New York, USA (GRID:grid.429884.b) (ISNI:0000 0004 1791 0895) 
 New York Genome Center, New York, USA (GRID:grid.429884.b) (ISNI:0000 0004 1791 0895); Center for Genomics and Systems Biology, New York University, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); David Geffen School of Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); David Geffen School of Medicine, University of California Los Angeles, Department of Computational Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California Los Angeles, Department of Computer Science, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); David Geffen School of Medicine, University of California Los Angeles, Department of Computational Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); David Geffen School of Medicine, University of California Los Angeles, Department of Anesthesiology and Perioperative Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Institute of Precision Health, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471528583
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.