Abstract

In this work, carbon nanotubes (CNTs)/nitrogen-doped activated carbon (AC) hybrids were designed and fabricated using a facile and one-step synthesis. The synthesis of CNTs is based on the recently discovered phenomenon of thermally-induced polyfurfuryl alcohol (PFA) conversion. Hybrid materials are fabricated through the in-situ free growth of closed carbon nanotubes on low-cost activated carbon substrates which were obtained from green algae or amino acids. Herein, three types of carbon nanotubes were observed to freely grow on an activated carbon background from Chlorella vulgaris or l-lysine, types such as multiwalled carbon and bamboo-like nanotubes, whose structure depends on the background used and conditions of the synthesis. Structure type is identified by analyzing transmission electron microscopy images. HRTEM images reveal the tubes’ outer diameter to be in the range of 20–120 nm. Because the carbon surface for the growth of carbon tubes contains nitrogen, the final hybrid materials also possess pyridinic-N and quaternary-N groups, as indicated by X-ray photoelectron spectra.

Details

Title
3D hierarchical porous hybrid nanostructure of carbon nanotubes and N-doped activated carbon
Author
Kamedulski Piotr 1 ; Zielinski Wojciech 1 ; Nowak Pawel 1 ; Lukaszewicz, Jerzy P 2 ; Ilnicka Anna 1 

 Nicolaus Copernicus University in Torun, Faculty of Chemistry, Torun, Poland (GRID:grid.5374.5) (ISNI:0000 0001 0943 6490) 
 Nicolaus Copernicus University in Torun, Faculty of Chemistry, Torun, Poland (GRID:grid.5374.5) (ISNI:0000 0001 0943 6490); Nicolaus Copernicus University in Torun, Centre for Modern Interdisciplinary Technologies, Torun, Poland (GRID:grid.5374.5) (ISNI:0000 0001 0943 6490) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471531097
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.