Abstract

Out-of-plane lesions pose challenges for CT-guided interventions. Augmented reality (AR) headsets are capable to provide holographic 3D guidance to assist CT-guided targeting. A prospective trial was performed assessing CT-guided lesion targeting on an abdominal phantom with and without AR guidance using HoloLens 2. Eight operators performed a cumulative total of 86 needle passes. Total needle redirections, radiation dose, procedure time, and puncture rates of nontargeted lesions were compared with and without AR. Mean number of needle passes to reach the target reduced from 7.4 passes without AR to 3.4 passes with AR (p = 0.011). Mean CT dose index decreased from 28.7 mGy without AR to 16.9 mGy with AR (p = 0.009). Mean procedure time reduced from 8.93 min without AR to 4.42 min with AR (p = 0.027). Puncture rate of a nontargeted lesion decreased from 11.9% without AR (7/59 passes) to 0% with AR (0/27 passes). First needle passes were closer to the ideal target trajectory with AR versus without AR (4.6° vs 8.0° offset, respectively, p = 0.018). AR reduced variability and elevated the performance of all operators to the same level irrespective of prior clinical experience. AR guidance can provide significant improvements in procedural efficiency and radiation dose savings for targeting out-of-plane lesions.

Details

Title
Augmented reality improves procedural efficiency and reduces radiation dose for CT-guided lesion targeting: a phantom study using HoloLens 2
Author
Park, Brian J. 1 ; Hunt, Stephen J. 2 ; Nadolski, Gregory J. 2 ; Gade, Terence P. 2 

 University School of Medicine, Oregon Health and Science, Portland, USA (GRID:grid.5288.7) (ISNI:0000 0000 9758 5690) 
 University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471541078
Copyright
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.