Abstract

Matter-wave interferometry and spectroscopy of optomechanical resonators offer complementary advantages. Interferometry with cold atoms is employed for accurate and long-term stable measurements, yet it is challenged by its dynamic range and cyclic acquisition. Spectroscopy of optomechanical resonators features continuous signals with large dynamic range, however it is generally subject to drifts. In this work, we combine the advantages of both devices. Measuring the motion of a mirror and matter waves interferometrically with respect to a joint reference allows us to operate an atomic gravimeter in a seismically noisy environment otherwise inhibiting readout of its phase. Our method is applicable to a variety of quantum sensors and shows large potential for improvements of both elements by quantum engineering.

Precise gravity sensing in dynamic environments is challenging. Here, the long-term stability of a matter-wave gravimeter and high bandwidth of an optical resonator are combined in a compact gravity sensor with high seismic noise suppression.

Details

Title
Optomechanical resonator-enhanced atom interferometry
Author
Richardson, Logan L 1 ; Rajagopalan Ashwin 2 ; Albers, Henning 2 ; Meiners, Christian 2 ; Nath Dipankar 2 ; Schubert, Christian 3 ; Tell Dorothee 2 ; Wodey Étienne 2   VIAFID ORCID Logo  ; Abend Sven 2 ; Gersemann Matthias 2 ; Ertmer, Wolfgang 3 ; Rasel, Ernst M 2 ; Schlippert Dennis 2   VIAFID ORCID Logo  ; Moritz, Mehmet 4 ; Lee, Kumanchik 5 ; Colmenero Luis 6 ; Spannagel Ruven 6 ; Braxmaier Claus 6 ; Guzmán, Felipe 7   VIAFID ORCID Logo 

 Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany (GRID:grid.9122.8) (ISNI:0000 0001 2163 2777); University of Arizona, College of Optical Sciences, Tucson, USA (GRID:grid.134563.6) (ISNI:0000 0001 2168 186X) 
 Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany (GRID:grid.9122.8) (ISNI:0000 0001 2163 2777) 
 Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany (GRID:grid.9122.8) (ISNI:0000 0001 2163 2777); German Aerospace Center (DLR) – Institute for Satellite Geodesy and Inertial Sensing, Hannover, Germany (GRID:grid.9122.8) 
 Institut für Gravitationsphysik / Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Leibniz Universität Hannover, Hannover, Germany (GRID:grid.9122.8) (ISNI:0000 0001 2163 2777) 
 German Aerospace Center (DLR) – Institute of Space Systems, Bremen, Germany (GRID:grid.9122.8); University of Bremen – Center of Applied Space Technology and Microgravity (ZARM), Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381) 
 German Aerospace Center (DLR) – Institute of Space Systems, Bremen, Germany (GRID:grid.7704.4); University of Bremen – Center of Applied Space Technology and Microgravity (ZARM), Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381) 
 University of Arizona, College of Optical Sciences, Tucson, USA (GRID:grid.134563.6) (ISNI:0000 0001 2168 186X); German Aerospace Center (DLR) – Institute of Space Systems, Bremen, Germany (GRID:grid.134563.6); University of Bremen – Center of Applied Space Technology and Microgravity (ZARM), Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381); Texas A&M University, Department of Aerospace Engineering & Physics, College Station, USA (GRID:grid.264756.4) (ISNI:0000 0004 4687 2082) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
23993650
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471564501
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.