It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, with kcat/KmH2O2 values in the order of 105–106 M−1 s−1. Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the hydroxylation of glycosidic bonds in polysaccharides, but the catalytic properties of these monocopper enzymes remain poorly characterized. Here authors employ competition between reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Tartu, Institute of Molecular and Cell Biology, Tartu, Estonia (GRID:grid.10939.32) (ISNI:0000 0001 0943 7661)
2 NMBU—Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food Science, Ås, Norway (GRID:grid.19477.3c) (ISNI:0000 0004 0607 975X); INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France (GRID:grid.5399.6) (ISNI:0000 0001 2176 4817)
3 NMBU—Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food Science, Ås, Norway (GRID:grid.19477.3c) (ISNI:0000 0004 0607 975X)