It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In recent years, the techniques of the exact sciences have been applied to the analysis of increasingly complex and non-linear systems. The related uncertainties and the large amounts of data available have progressively shown the limits of the traditional hypothesis driven methods, based on first principle theories. Therefore, a new approach of data driven theory formulation has been developed. It is based on the manipulation of symbols with genetic computing and it is meant to complement traditional procedures, by exploring large datasets to find the most suitable mathematical models to interpret them. The paper reports on the vast amounts of numerical tests that have shown the potential of the new techniques to provide very useful insights in various studies, ranging from the formulation of scaling laws to the original identification of the most appropriate dimensionless variables to investigate a given system. The application to some of the most complex experiments in physics, in particular thermonuclear plasmas, has proved the capability of the methodology to address real problems, even highly nonlinear and practically important ones such as catastrophic instabilities. The proposed tools are therefore being increasingly used in various fields of science and they constitute a very good set of techniques to bridge the gap between experiments, traditional data analysis and theory formulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padua, Italy (GRID:grid.433323.6) (ISNI:0000 0004 1757 3358)
2 University of Rome “Tor Vergata”, Department of Industrial Engineering, Rome, Italy (GRID:grid.6530.0) (ISNI:0000 0001 2300 0941)
3 CIEMAT, Laboratorio Nacional de Fusión, Madrid, Spain (GRID:grid.420019.e) (ISNI:0000 0001 1959 5823)