It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner envelope membranes of chloroplast (TOC–TIC) complex, upon light exposure is a prerequisite to the import of abundant nuclear-encoded photosynthesis-associated proteins. However, the mechanism that coordinates the optimization of the TOC–TIC complex with the expression of nuclear-encoded photosynthesis-associated genes remains to be characterized in detail. To address this question, we investigated the mechanism by which plastid protein import is regulated by light during photomorphogenesis in Arabidopsis. We found that the albino plastid protein import2 (ppi2) mutant lacking Toc159 protein import receptors have active photoreceptors, even though the mutant fails to induce the expression of photosynthesis-associated nuclear genes upon light illumination. In contrast, many TOC and TIC genes are rapidly induced by blue light in both WT and the ppi2 mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC–TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Miyazaki, Department of Agricultural and Environmental Sciences, Faculty of Agriculture, Miyazaki, Japan (GRID:grid.410849.0) (ISNI:0000 0001 0657 3887)
2 Michigan State University, AgBioResearch, College of Agriculture and Natural Resources, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785)
3 NARO, Institute of Vegetable and Floriculture Science, Tsu, Japan (GRID:grid.416835.d) (ISNI:0000 0001 2222 0432)