It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We report on optical spectroscopic study of the Sr3(Ir1-xRux)2O7 system over a wide doping regime. We find that the changes in the electronic structure occur in the limited range of the concentration of Ru ions where the insulator–metal transition occurs. In the insulating regime, the electronic structure associated with the effective total angular momentum Jeff = 1/2 Mott state remains robust against Ru doping, indicating the localization of the doped holes. Upon entering the metallic regime, the Mott gap collapses and the Drude-like peak with strange metallic character appears. The evolution of the electronic structure registered in the optical data can be explained in terms of a percolative insulator–metal transition. The phonon spectra display anomalous doping evolution of the lineshapes. While the phonon modes of the compounds deep in the insulating and metallic regimes are almost symmetric, those of the semiconducting compound with x = 0.34 in close proximity to the doping-driven insulator–metal transition show a pronounced asymmetry. The temperature evolution of the phonon modes of the x = 0.34 compound reveals the asymmetry is enhanced in the antiferromagnetic state. We discuss roles of the S = 1 spins of the Ru ions and charge excitations for the conspicuous lineshape asymmetry of the x = 0.34 compound.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Hanyang University, Department of Physics, Seoul, Republic of Korea (GRID:grid.49606.3d) (ISNI:0000 0001 1364 9317)
2 University of California, Materials Department, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676)
3 Hanyang University, Department of Physics, Seoul, Republic of Korea (GRID:grid.49606.3d) (ISNI:0000 0001 1364 9317); Hanyang University, Research Institute of Natural Science, Seoul, Republic of Korea (GRID:grid.49606.3d) (ISNI:0000 0001 1364 9317)