Abstract

In polyjet printing photopolymer droplets are deposited on a build tray, leveled off by a roller and cured by UV light. This technique is attractive to fabricate heterogeneous architectures combining compliant and stiff constituents. Considering the layer-by-layer nature, interfaces between different photopolymers can be formed either before or after UV curing. We analyzed the properties of interfaces in 3D printed composites combining experiments with computer simulations. To investigate photopolymer blending, we characterized the mechanical properties of the so-called digital materials, obtained by mixing compliant and stiff voxels according to different volume fractions. We then used nanoindentation to measure the spatial variation in mechanical properties across bimaterial interfaces at the micrometer level. Finally, to characterize the impact of finite-size interfaces, we fabricated and tested composites having compliant and stiff layers alternating along different directions. We found that interfaces formed by deposition after curing were sharp whereas those formed before curing showed blending of the two materials over a length scale bigger than individual droplet size. We found structural and functional differences of the layered composites depending on the printing orientation and corresponding interface characteristics, which influenced deformation mechanisms. With the wide dissemination of 3D printing techniques, our results should be considered in the development of architectured materials with tailored interfaces between building blocks.

Details

Title
Properties and role of interfaces in multimaterial 3D printed composites
Author
Zorzetto, Laura 1 ; Andena Luca 2 ; Briatico-Vangosa Francesco 2 ; De, Noni Lorenzo 2 ; Jean-Michel, Thomassin 3 ; Jérôme, Christine 3 ; Grossman, Quentin 1 ; Mertens, Anne 4 ; Weinkamer, Richard 5 ; Rink, Marta 2 ; Ruffoni Davide 1 

 University of Liège, Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, Liège, Belgium (GRID:grid.4861.b) (ISNI:0000 0001 0805 7253) 
 Materiali e Ingegneria Chimica “G. Natta”, Politecnico Di Milano, Dipartimento di Chimica, Milan, Italy (GRID:grid.4643.5) (ISNI:0000 0004 1937 0327) 
 University of Liège, Center for Education and Research on Macromolecules, Liège, Belgium (GRID:grid.4861.b) (ISNI:0000 0001 0805 7253) 
 University of Liège, Metallic Materials Science Unit, Department of Aerospace and Mechanical Engineering, Liège, Belgium (GRID:grid.4861.b) (ISNI:0000 0001 0805 7253) 
 Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany (GRID:grid.419564.b) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473192163
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.