It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thermal-stimuli responsive nanomaterials hold great promise in designing multifunctional intelligent devices for a wide range of applications. In this work, a reversible isomeric transformation in an atomically precise nanocluster is reported. We show that biicosahedral [Au13Ag12(PPh3)10Cl8]SbF6 nanoclusters composed of two icosahedral Au7Ag6 units by sharing one common Au vertex can produce two temperature-responsive conformational isomers with complete reversibility, which forms the basis of a rotary nanomotor driven by temperature. Differential scanning calorimetry analysis on the reversible isomeric transformation demonstrates that the Gibbs free energy is the driving force for the transformation. This work offers a strategy for rational design and development of atomically precise nanomaterials via ligand tailoring and alloy engineering for a reversible stimuli-response behavior required for intelligent devices. The two temperature-driven, mutually convertible isomers of the nanoclusters open up an avenue to employ ultra-small nanoclusters (1 nm) for the design of thermal sensors and intelligent catalysts.
Atomically precise metal nanoclusters are an emerging class of precision nanomaterials and hold potential in many applications. Here, the authors devise a [Au13Ag12(PPh3)10Cl8]+ nanocluster with two conformational isomers that can reversibly convert in response to temperature, and hence acts as a rotary nanomotor.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309); Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X)
4 Carnegie Mellon University, Department of Chemistry, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344)
5 Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)