Abstract

Thermal-stimuli responsive nanomaterials hold great promise in designing multifunctional intelligent devices for a wide range of applications. In this work, a reversible isomeric transformation in an atomically precise nanocluster is reported. We show that biicosahedral [Au13Ag12(PPh3)10Cl8]SbF6 nanoclusters composed of two icosahedral Au7Ag6 units by sharing one common Au vertex can produce two temperature-responsive conformational isomers with complete reversibility, which forms the basis of a rotary nanomotor driven by temperature. Differential scanning calorimetry analysis on the reversible isomeric transformation demonstrates that the Gibbs free energy is the driving force for the transformation. This work offers a strategy for rational design and development of atomically precise nanomaterials via ligand tailoring and alloy engineering for a reversible stimuli-response behavior required for intelligent devices. The two temperature-driven, mutually convertible isomers of the nanoclusters open up an avenue to employ ultra-small nanoclusters (1 nm) for the design of thermal sensors and intelligent catalysts.

Atomically precise metal nanoclusters are an emerging class of precision nanomaterials and hold potential in many applications. Here, the authors devise a [Au13Ag12(PPh3)10Cl8]+ nanocluster with two conformational isomers that can reversibly convert in response to temperature, and hence acts as a rotary nanomotor.

Details

Title
Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors
Author
Qin Zhaoxian 1 ; Zhang Jiangwei 2   VIAFID ORCID Logo  ; Wan Chongqing 3   VIAFID ORCID Logo  ; Liu, Shuang 2 ; Abroshan Hadi 4   VIAFID ORCID Logo  ; Jin Rongchao 4   VIAFID ORCID Logo  ; Gao, Li 5   VIAFID ORCID Logo 

 Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309); Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
 Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X) 
 Carnegie Mellon University, Department of Chemistry, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344) 
 Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473270319
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.