Abstract

The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000–12,000 and 5000–6500 transient IOP fluctuations per hour > 0.6 mmHg, representing 8–16% and 4–8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant (p < 0.05) but the effect sizes were small and clinically insignificant. IOP dynamics can be accurately captured by sampling IOP at 200 Hz on a 10% duty cycle using either IO or EO transducers.

Details

Title
Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry
Author
Jasien, Jessica V 1 ; Zohner Ye Emma 2 ; Kuhn, Asif Sonia 3 ; Rhodes, Lindsay A 3 ; Samuels, Brian C 3 ; Girkin, Christopher A 3 ; Morris, Jeffrey S 4 ; Crawford, Downs J 3 

 University of Alabama at Birmingham, Vision Science Graduate Program, School of Optometry, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 Rice University, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
 University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, School of Medicine, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473274520
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.