Abstract

The phase stability and microstructure of ZrO2–5CaO and ZrO2–24MgO mixed coating (wt%) by air plasma spraying on 304 stainless steel substrates were investigated. A Ni–5Al (wt%) metallic bond coating was firstly sprayed between the substrate and the ceramic top layer. The results were compared with the individual coatings of ZrO2–5CaO and ZrO2–24MgO for a better understanding of the correlation between their microstructures and mechanical properties. Mixed zirconia coating was found to have a mixture of cubic and tetragonal phases that stabilized under different plasma spray conditions. Microscopic observations and elemental composition analysis of as-sprayed mixed coating showed that modified ceramic-matrix grains had been formed. Microsized ZrO2–5CaO particles were embedded in the matrix grain creating an intragranular microstructure. Results indicated that ceramic-matrix grains provided a diffusion barrier for the growth of oxides induced stress near and onto the bond layer that reduced cracks, thereby overcoming the top delamination of the ceramic coating. Moreover, disparity in wear resistance and microhardness behavior of the coatings was influenced by initial feedstock powder and matrix microstructures. Improvement in the wear resistance of the mixed zirconia coating was attributed to a decrease in oxide content, which resulted in an increase in intersplat cohesive strength.

Details

Title
Improving wear resistance of plasma-sprayed calcia and magnesia-stabilized zirconia mixed coating: roles of phase stability and microstructure
Author
Hafez Mohamed Abd-Elsattar 1 ; Akila Sameh Ahmed 1 ; Khedr Mohamed Atta 1 ; Khalil Ali Saeid 2 

 Cairo University, Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Giza, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286) 
 Tabbin Institute for Metallurgical Studies, Metallurgy and Mining Department, Helwan, Cairo, Egypt (GRID:grid.442730.6) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473304803
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.