It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the modern IT industry, the basis for the nearest progress is artificial intelligence technologies and, in particular, artificial neuron systems. The so-called neural networks are constantly being improved within the framework of their many learning algorithms for a wide range of tasks. In the paper, a class of approximation problems is distinguished as one of the most common classes of problems in artificial intelligence systems. The aim of the paper is to study the most recommended learning algorithms, select the most optimal one and find ways to improve it according to various characteristics. Several of the most commonly used learning algorithms for approximation are considered. In the course of computational experiments, the most advantageous aspects of all the presented algorithms are revealed. A method is proposed for improving the computational characteristics of the algorithms under study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer