Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background and objectives: aggregation and structure play key roles in the water-holding capacity and stability of soils and are important for the physical protection and storage of soil carbon (C). Forest soils are an important sink of ecosystem C, though the capacity to store C may be disrupted by the elevated atmospheric deposition of nitrogen (N) and sulfur (S) compounds by dispersion of soil aggregates via acidification or altered microbial activity. Furthermore, dominant tree species and the lability of litter they produce can influence aggregation processes. Materials and methods: we measured water-stable aggregate size distribution and aggregate-associated organic matter (OM) content in soils from two watersheds and beneath four hardwood species at the USDA Forest Service Fernow Experimental Forest in West Virginia, USA, where one watershed has received (NH4)2SO4 fertilizer since 1989 and one is a reference/control of similar stand age. Bulk soil OM, pH, and permanganate oxidizable carbon (POXC) were also measured. Research highlights: fertilized soil exhibited decreased macro-aggregate formation and a greater proportion of smaller micro-aggregates or unassociated clay minerals, particularly in the B-horizon. This shift in aggregation to soil more dominated by the smallest (<53 µm) fraction is associated with both acidification (soil pH) and increased microbially processed C (POXC) in fertilized soil. Intra-aggregate OM was also depleted in the fertilized soil (52% less OM in the 53–2000 µm fractions), most strongly in subsurface B-horizon soil. We also document that tree species can influence soil aggregation, as soil beneath species with more labile litter contained more OM in the micro-aggregate size class (<250 µm), especially in the fertilized watershed, while species with more recalcitrant litter promoted more OM in the macro-aggregate size classes (500–2000 µm) in the reference watershed. Conclusions: long-term fertilization, and likely historic atmospheric deposition, of forest soils has weakened macro-aggregation formation, with implications for soil stability, hydrology, and storage of belowground C.

Details

Title
Fertilization and Tree Species Influence on Stable Aggregates in Forest Soil
First page
39
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2474770926
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.