Full text

Turn on search term navigation

Copyright © 2020 Yang Miao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

The working environment of seawater axial piston hydraulic pump is harsh, and it is difficult to diagnose due to insufficient fault database. In contrast, pumps of the same type but using hydraulic oil have an adequate fault database and are easy to diagnose. In view of the above situation, a fault diagnosis method of seawater hydraulic piston pump based on transfer learning is proposed. The method decomposes the original sampled fault signal by complementary ensemble empirical mode decomposition (CEEMD) to obtain the intrinsic mode function (IMF) that can characterize the original signal. The singular value decomposition (SVD) is performed on the IMF. Then, the obtained singular value is used as a feature parameter to construct a feature vector. The feature data of seawater hydraulic pump and oil pump are used as target data and auxiliary data to form training data. The training data is trained based on the iterative adjustment of the weight through the TrAdaBoost transfer learning algorithm. Finally, the results of diagnosis and classification are compared with traditional machine learning. When the number of training data is 5 groups, the accuracy of transfer learning is 30.5% higher than that of traditional machine learning. The results show that transfer learning has great advantages in the case of a small number of samples.

Details

Title
Application of Fault Diagnosis of Seawater Hydraulic Pump Based on Transfer Learning
Author
Yang, Miao 1   VIAFID ORCID Logo  ; Jiang, Yuncheng 2 ; Huang, Jinfeng 2 ; Zhang, Xiaojun 2 ; Han, Lei 3 

 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China; Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China 
 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China 
 Beijing University of Posts and Telecommunications, Beijing, China 
Editor
Francisco Beltran-Carbajal
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2474848271
Copyright
Copyright © 2020 Yang Miao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/