This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Mitochondria, subcellular organelles found in most eukaryotic cells, are responsible for numerous metabolic network processes, including the tricarboxylic acid cycle (TCA cycle), glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, and fatty acid oxidation. Among them, the most important physiological function of mitochondria is to generate ATP by oxidizing nutrients. To participate in adenosine 5
At present, it is recognized that many pathological changes are associated with impaired mitochondrial function [3], such as increased accumulation of ROS and decreased OXPHOS and ATP production. Although the production of intracellular ROS is itself an inevitable process, cells have an adaptive defense system to scavenge ROS [4]. However, under most oxidative stress conditions, the endogenous antioxidant system in the cells is not enough to scavenge excess ROS. In that case, the accumulation of ROS will cause oxidative damage to intracellular lipids, DNA, and proteins, thereby accelerating the development of related diseases [5]. In the past decade, research has focused on maintaining redox homeostasis and normal function of mitochondria via antioxidants [6]. Current medical projects are aimed at exploiting drugs that restore mitochondrial function and regulate mitochondrial ROS production [7]. To modulate mitochondrial redox homeostasis, the drug should selectively accumulate in the mitochondria and interact with mitochondrial targets, ultimately maintaining normal cellular functions [8]. Although this mitochondrial targeting strategy is attractive, the clinical applications are hampered by some challenges, such as the poor biological availability and the lack of evidence in animal models and clinical research studies [9]. Several drugs have been applied for clinical trials; however, no drug has been approved by the US Food and Drug Administration (FDA) for mitochondria-targeted treatment.
The present review article is aimed at summarizing experimental data on mitochondria-targeted antioxidants (MTAs) for various disease treatments in different models and clinical trials to present the evidence supporting the therapeutic potential of these MTAs. We specifically focused on brain neurological diseases [10, 11], cardiovascular diseases [12–14], and cancer development [15, 16], all of which are closely associated with oxidative damage and signal activation caused by the excess accumulation of ROS in mitochondria. Meanwhile, the potential MTA applications in disease treatment, their limitations, and prospects for exploiting MTAs are discussed.
2. Moving Forward from Nontargeted Antioxidants to MTAs
An increasing number of studies are aimed at developing conventional (nontargeted) antioxidants for restoring physiology conditions during oxidative stress. Although preliminary studies on many cell or animal models showed promising results, the results from clinical trials were sometimes contradictory. A recent review article [17] has summarized the adverse effects of nontargeted antioxidants (NAs) including vitamin A, vitamin C, vitamin E, and β-carotene. These adverse effects of NAs were mainly observed in the treatments of lung cancer and cardiovascular diseases [18]. Redox signaling is an important part of many physiological processes. Excessive or inappropriate use of antioxidants may abolish ROS production and result in compensatory upregulation of mitogen-activated protein kinase (MAPK) pathways [19], which in turn negatively affect the endogenous antioxidant system and normal cell growth [20]. Another concern is whether conventional (nontargeted) antioxidants can be absorbed properly and how they are metabolized in different organs. These uncertainties make it difficult to determine the dose of traditional antioxidants used for disease treatment. The most effective way for an antioxidant stepping forward to disease treatment is to conjugate with a carrier, such as lipophilic cations, liposomes, or peptides, to enable its bioactive ingredient to be targeted for transport into the mitochondria. This targeted delivery enables antioxidants to achieve high concentration accumulation in cells and mitochondria, thereby protecting cells and tissues from oxidative damage through different mechanisms. Ideal antioxidants should be bioavailable and can quickly enter the blood circulation via intestinal absorption or intravenous injection. The MTAs could accumulate in the mitochondria and protect the targeted tissues (brain, liver, kidney, muscle, ear, and heart) from oxidative damage (Figure 1). In the past decade, many studies focusing on the development of mitochondria-targeted antioxidants gave promising results, which we will discuss in detail.
[figure omitted; refer to PDF]
Toxicity to mitochondria is a major limiting factor for the application of TPP-linked antioxidants in disease treatment [26]. During the transport of the TPP-linked antioxidants, TPPs increasingly adhere to the surface of the mitochondrial inner membrane. This accumulation of TPPs could destroy the integrity of the mitochondrial membrane and limit aerobic respiration and ATP synthesis [27]. In the toxicity assessment of in vivo experiments [28] using a mouse model, the maximum tolerated doses of methyl TPP and MitoE2 are 3.8 and 6.0 mg/(
4. Liposome-Encapsulated Antioxidants
Liposomes are lipid bilayer membrane vesicles first discovered in 1964 and have been commonly used as nanocarriers for pharmaceuticals and bioactive substances [40]. One advantage of the liposomal encapsulation strategy over lipophilic cations is that bioactive molecules can be encapsulated and delivered without altering their molecular structure and bioactivity. The liposome-encapsulated antioxidants are composed of phosphatidylcholine, phosphatidylglycerol, cholesterol, and antioxidant component. The encapsulated antioxidants such as quercetin, N-acetyl-L-cysteine (NAC), and vitamin E exhibited better therapeutic effects on the models of liver injuries [41] and MCF-7 carcinoma cells [42] when compared with those in nonencapsulated form. For example, only liposomal encapsulated NAC can long-lastingly prevent the cytokine-induced neutrophil chemoattractant expression in the lung, thereby protecting the rats against lipopolysaccharide-induced acute respiratory distress syndrome [43]. It has been reviewed that liposomal encapsulated analogs of vitamin E (α-tocopheryl succinate and α-tocopheryl ether-linked acetic acid) exerted better anticancer effects on various cancer models due to their higher solubility in aqueous solvents [44]. In a clinical study on fatty liver patients, the phospholipid-encapsulated silybin was revealed to protect the liver from oxidative damage via enhancing mitochondrial function and insulin sensitization [45]. Liposome-encapsulated curcumin administration with 100 mg/(
Liposome-based delivery systems can carry conventional antioxidants into the mitochondria of the living cells. The transport mechanism of liposome-encapsulated MTAs is shown in Figure 3. Liposome-encapsulated antioxidants enter the cells via micropinocytosis; after macropinosome disruption, the liposomal components fuse with the mitochondrial membrane, during which the antioxidant components are delivered into the matrix of targeted mitochondria. The main disadvantage of the liposome system for MTA delivery is the escape of endosome degradation, which limits the endosomes spontaneously degrading in the cytoplasm and mitochondria. To overcome this limitation, the MITO-Porter that consists of a condensed plasmid DNA and a lipid envelope was developed to deliver bioactive components to mitochondria [48]. The inventors have introduced the characteristics and potential development of MITO-Porter in a specific chapter [49]. Generally, the MITO-Porter-decorated liposomes consist of 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, sphingomyelin, and stearylated octaarginine peptide (R8). During a mitochondria-targeted delivery process, the MITO-Porter-decorated liposomes bind to the mitochondria via electrostatic interactions between R8 and negatively charged mitochondria and then fuse with the mitochondrial membrane. This delivery system can achieve efficient cytoplasmic and mitochondria-targeted delivery, which provides a new way for the treatment of mitochondrial disease. Besides, delivery experiments using fluorescent probes have verified MITO-Porter as an effective tool for macromolecule-targeted delivery [50].
[figure omitted; refer to PDF]
In a mouse model of liver ischemia/reperfusion injury, systemic injection of MITO-Porter-encapsulated CoQ10 (CoQ10-MITO-Porter) decreased serum alanine transaminase (ALT) and prevented kidney injury [51]. Recently, the mitochondrial delivery of methylated β-cyclodextrin-threaded polyrotaxanes using a MITO-Porter was revealed to mediate mitochondrial autophagy, which might be useful for mitochondria-associated disease treatment [52]. Moreover, the dual-function MITO-Porter (DF-MITO-Porter) that integrates both R8-modified liposomes and MITO-Porter was developed to effectively deliver exogenous macrobiomolecules into the mitochondria, providing an excellent delivery system for mitochondrial disease treatment [53]. More research studies on the MITO-Porter delivery system are expected to be conducted to shed more light on the mitochondrial therapeutic strategy and targeted antioxidant development.
5. Peptide-Based Mitochondrial Antioxidants
The Szeto-Schiller peptide (SS-peptide) and the mitochondria-penetrating peptide (MPP) are peptide chain-based antioxidant delivery systems. SS-peptides contain different small-molecule lipophilic antioxidant compounds and three positive charges and can be targeted-delivered to the mitochondria with the help of ΔΨm of the cellular membrane and mitochondrial membrane [54]. The advantageous properties of SS-peptides include the following: (1) alternating the MPP sequence between the basic and aromatic residues which favor their efficient absorption by cells; (2) unsaturated transport independently from the energy state or a dedicated peptide transporter [55]; (3) small and easily soluble in water, easy to synthesize, and the presence of D-amino acids at specific positions which prevents them from being degraded by aminopeptidases and allows them to be effectively transported into the mitochondria [56]; and (4) 1000-5000 times accumulation in the mitochondria.
Various experiments have confirmed that SS-peptides can be rapidly absorbed by different cell types, such as neurons [57], kidneys [58], epithelial cells, and endothelial cells [59]. It is noteworthy that the mitochondrial uptake speed of SS-peptides is ΔΨm-independent. The absorption of the SS-peptides does not affect the polarization of the mitochondrial membrane, which makes them ideal antioxidants for disease treatment [60]. For example, SS-02 was revealed to easily penetrate a single layer of intestinal epithelial cells from the basal and apical direction [61]. SS-02 has also been reported to penetrate the blood-brain barrier and thus serve as a neuroprotective agent [62]. The SS-peptides are effective in alleviating oxidative stress both in cell models and isolated mitochondria [63], among them SS-31 was widely validated to be effective. The therapeutic potential of SS-31 has been documented for many conditions including brain microvascular endothelial cell damage [64], lateral line hair cell damage [65], mitochondrial morphogenesis [66], atherosclerosis [67], Friedreich ataxia [68], renal fibrosis [69], limb ischemia-reperfusion injury [70], exercise tolerance [71], type 2 diabetes [72], hearing loss [73], neurovascular coupling responses [74], cardiac arrest [75], traumatic brain injury [76, 77], heart failure [78–81], and acute kidney injury [82]. Of importance, the phase 2a clinical trial of SS-31 (unique identifier: NCT01755858) on the atherosclerotic renal artery stenosis patients (ARASP) showed that supplementing with SS-31 during percutaneous transluminal renal angioplasty alleviated the pathological symptoms and improved kidney function, indicating a positive prospect of SS-31 in clinical application for ARASP [83].
A recent study on aged mice revealed that the disruption of mitochondrial redox homeostasis in muscle resulted in energy defect and exercise intolerance, and SS-31 administration restored redox homeostasis of the aged muscle, thereby increasing the exercise tolerance [71]. Five hours of SS-31 treatment significantly decreased mortality of cardiac arrest rats, during which the blood lactate level in the SS-31-treated rats was significantly decreased, suggesting improved mitochondrial aerobic respiration by SS-31 treatment [75]. The antioxidative roles of SS-31 have been also documented in kidney glomerular mitochondria [84]. SS-31 administration was revealed to prevent negative changes in pathological parameters in chronic kidney disease models [69]. More recently, an acute kidney injury- (AKI-) targeted nanopolyplex was designed for SS-31 delivery, which demonstrates a positive effect of combining the use of nanopolyplexes and SS-31 in the oxidative stressed and inflamed kidney [82]. Similarly, treatment with SS-31 was found to decrease cytoplasmic and mitochondrial O2- production by regulating the expression of NADPH oxidase subunit NOX4 in a model of traumatic brain injury [76].
Mitochondria-penetrating peptides (MPPs) consist of 4 to 8 alternating positively charged hydrophobically modified amino acids. They have been widely used for the targeted delivery of mitochondrial small molecules with the help of ΔΨm [85]. A series of XJB peptide-based antioxidants (XJB-5-131, XJB-5-125, and XJB-5-197) have been developed (Figure 4). XJB-5-131, a scavenger for mitochondrial ROS, is the most studied among all the XJB peptide-based antioxidants and has been reported to promote weight gain, prevent neuronal death, and reduce oxidative damage in a mouse model of neurodegeneration [86]. Besides, XJB-5-131 was demonstrated to alleviate oxidative damage of DNA and improve physiology behavior in a Huntington’s disease model [87, 88]. Likewise, the compounds of XJB-5-131 and JP4-039 were reported to inhibit ferroptosis via scavenging ROS and altering the subcellular localization of the ferroptosis suppressors [89]. These findings encourage more therapeutic evaluation of XJB peptide-based antioxidants in clinical trials.
[figure omitted; refer to PDF]
MTAs have yielded promising results in several in vitro and animal models for cancer studies; however, it is noteworthy that some subsets of cancer cells, such as melanoma tumor cells, exhibit metabolic reprogramming heterogeneity, showing different bioenergy and ROS detoxification capabilities [147]. Besides, a study comparing the effects of MTAs and NAs on the hepatocarcinogenesis indicates contradictory results; that is, nontargeted antioxidants (NAC and vitamin E analog Trolox) prevented tumorigenesis, whereas MTAs (SS-31 and Mito-Q) aggravated tumorigenesis [148]. Therefore, it is critical to clarify the metabolic patterns of different cancer cells in a specific stage and to carefully adopt appropriate therapeutic strategies before clinical intervention with MTAs.
7. Conclusion
Mitochondria produce most of the energy and ROS in cells. Mitochondrial ROS are important signaling molecules involved in many cellular adaptative oxidative defense systems. However, excessive ROS accumulation or insufficient clearance results in damaged mitochondrial DNA and protein, both of which are pathophysiological features of a variety of diseases. In the past decades, many studies focused on developing NAs to restore the normal physiological function of oxidative stressed mitochondria. Research studies on various models were promising, but clinical trials sometimes showed contradictory results. Redox signaling is an important part of many physiological processes. Excessive or inappropriate use of antioxidants may abolish ROS production and result in compensatory upregulation of MAPK pathways, which in turn break down the endogenous antioxidant system. Thus, applying the appropriate dosage and delivery method of these antioxidants to balance ROS production and antioxidation is crucial for the clinical trials. Recently, a variety of mitochondria-targeted delivery systems and antioxidants have been exploited to recover mitochondrial function from the pathological conditions in different mechanisms. The outstanding advantages of MTAs over the nontargeted ones include (1) efficient pharmacokinetics and absorption and (2) specific accumulation at cells and mitochondria, avoiding nonspecific high concentration-induced side effects.
This article reviews the characteristics and applications of different mitochondria-targeting tools, including lipophilic cations, liposome vectors, peptide-based targeting, and their recent research reports. Overall, most of these tools have shown beneficial roles for mitochondria-targeting delivery. Based on these delivery tools, an increasing number of MTAs are currently being evaluated, some of which have been validated as effective agents in stage 2 clinical trials, providing unlimited possibilities for mitochondria-targeted therapies. Although the results from current studies are very promising, the human clinical trials on different disease stages should be firstly standardized to effectively translate these research results into usable medicines. Besides, these noteworthy questions should be preferentially considered to exploit more MTAs for disease treatment in the future (refer to noteworthy questions).
Additional Points
Noteworthy Questions. (1) What is the decisive mechanism in the development of mitochondria-targeted disease? (2) What is the most effective antioxidant for regulating the decisive mechanism (according to the experiment on separated mitochondria)? (3) Which delivery system will be the best choice for the mitochondria-targeted delivery of antioxidants? (4) How to optimize the effective MTA dosage in different administration approaches (e.g., oral, intravenous, or subcutaneous) for disease treatment? (5) How to standardize a clinical trial (e.g., how many patients to get involved, how long for patient tracking, and what parameters to assess side effects) for the evaluation of MTAs in disease treatment?
Authors’ Contributions
Q. J., J. Y., JS. C., XK. M., MM. W., G. L., K. Y., BE. T., and YL. Y. cowrote the manuscript.
Acknowledgments
The authors apologize to scientists in this field whose papers are not cited due to space limitations. The authors are grateful to Emily Ammeter, who is one of the summer undergraduate students in the Department of Animal Science at the University of Manitoba, for her help in the manuscript preparation. This research was funded by the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001), the Hunan Science Foundation for Outstanding Young Scholars (2020JJ3023), and the Open Project Program of Key Laboratory of Feed Biotechnology, the Ministry of Agriculture and Rural Affairs of the People’s Republic of China.
[1] E. Cadenas, K. J. Davies, "Mitochondrial free radical generation, oxidative stress, and aging," Free Radical Biology & Medicine, vol. 29 no. 3-4, pp. 222-230, DOI: 10.1016/s0891-5849(00)00317-8, 2000.
[2] D. R. Green, L. Galluzzi, G. Kroemer, "Metabolic control of cell death," Science, vol. 345 no. 6203, article e1250256,DOI: 10.1126/science.1250256, 2014.
[3] Q. Cai, P. Tammineni, "Alterations in mitochondrial quality control in Alzheimer's disease," Frontiers in Cellular Neuroscience, vol. 10,DOI: 10.3389/fncel.2016.00024, 2016.
[4] Y. Miura, "Oxidative stress, radiation-adaptive responses, and aging," Journal of Radiation Research, vol. 45 no. 3, pp. 357-372, DOI: 10.1269/jrr.45.357, 2004.
[5] J. P. Kamat, A. Ghosh, T. P. A. Devasagayam, "Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization," Molecular and Cellular Biochemistry, vol. 209 no. 1/2, pp. 47-53, DOI: 10.1023/A:1007048313556, 2000.
[6] A. Picca, R. T. Mankowski, J. L. Burman, L. Donisi, J. S. Kim, E. Marzetti, C. Leeuwenburgh, "Mitochondrial quality control mechanisms as molecular targets in cardiac ageing," Nature Reviews Cardiology, vol. 15 no. 9, pp. 543-554, DOI: 10.1038/s41569-018-0059-z, 2018.
[7] M. Picard, D. C. Wallace, Y. Burelle, "The rise of mitochondria in medicine," Mitochondrion, vol. 30, pp. 105-116, DOI: 10.1016/j.mito.2016.07.003, 2016.
[8] H. H. Szeto, "Cell-permeable, mitochondrial-targeted, peptide antioxidants," The AAPS Journal, vol. 8 no. 2, pp. E277-E283, DOI: 10.1007/bf02854898, 2006.
[9] W. J. Zhang, X. L. Hu, Q. Shen, D. Xing, "Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy," Nature Communications, vol. 10 no. 1,DOI: 10.1038/s41467-019-09566-3, 2019.
[10] M. Takahashi, K. Takahashi, "Water-soluble CoQ10 as a promising anti-aging agent for neurological dysfunction in brain mitochondria," Antioxidants, vol. 8 no. 3,DOI: 10.3390/antiox8030061, 2019.
[11] B. G. Trist, D. J. Hare, K. L. Double, "Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease," Aging Cell, vol. 18 no. 6,DOI: 10.1111/acel.13031, 2019.
[12] V. Ravarotto, F. Simioni, G. Carraro, G. Bertoldi, E. Pagnin, L. Calò, "Oxidative stress and cardiovascular-renal damage in Fabry disease: is there room for a pathophysiological involvement?," Journal of Clinical Medicine, vol. 7 no. 11,DOI: 10.3390/jcm7110409, 2018.
[13] P. Y. Zhang, X. Xu, X. C. Li, "Cardiovascular diseases: oxidative damage and antioxidant protection," European Review for Medical and Pharmacological Sciences, vol. 18 no. 20, pp. 3091-3096, 2014.
[14] H. Hadi, R. Vettor, M. Rossato, "Vitamin E as a treatment for nonalcoholic fatty liver disease: reality or myth?," Antioxidants, vol. 7 no. 1,DOI: 10.3390/antiox7010012, 2018.
[15] U. Ho, J. Luff, A. James, C. S. Lee, H. Quek, H. C. Lai, S. Apte, Y. C. Lim, M. F. Lavin, T. L. Roberts, "SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress," Journal of Cellular and Molecular Medicine, vol. 23 no. 12, pp. 8151-8160, DOI: 10.1111/jcmm.14685, 2019.
[16] P. Reberio, A. James, S. Ling, C. S. Lee, U. Ho, J. Luff, H. Quek, M. Lavin, T. Roberts, "ATM and SMG1 are tumour suppressors which co- regulate blood cancer development and cellular responses to DNA damage and oxidative stress," Leukemia & Lymphoma, vol. 56, pp. 78-78, DOI: 10.3109/10428194.2015.108089306, 2015.
[17] B. Salehi, M. Martorell, J. L. Arbiser, A. Sureda, N. Martins, P. Maurya, M. Sharifi-Rad, P. Kumar, J. Sharifi-Rad, "Antioxidants: positive or negative actors?," Biomolecules, vol. 8 no. 4,DOI: 10.3390/biom8040124, 2018.
[18] Y. Park, D. Spiegelman, D. J. Hunter, D. Albanes, L. Bergkvist, J. E. Buring, J. L. Freudenheim, E. Giovannucci, R. A. Goldbohm, L. Harnack, I. Kato, V. Krogh, M. F. Leitzmann, P. J. Limburg, J. R. Marshall, M. L. McCullough, A. B. Miller, T. E. Rohan, A. Schatzkin, R. Shore, S. Sieri, M. J. Stampfer, J. Virtamo, M. Weijenberg, W. C. Willett, A. Wolk, S. M. Zhang, S. A. Smith-Warner, "Intakes of vitamins A, C, and E and use of multiple vitamin supplements and risk of colon cancer: a pooled analysis of prospective cohort studies," Cancer Causes & Control, vol. 21 no. 11, pp. 1745-1757, DOI: 10.1007/s10552-010-9549-y, 2010.
[19] F. Cerimele, T. Battle, R. Lynch, D. A. Frank, E. Murad, C. Cohen, N. Macaron, J. Sixbey, K. Smith, R. S. Watnick, A. Eliopoulos, B. Shehata, J. L. Arbiser, "Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr virus (EBV)-positive versus EBV-negative Burkitt's lymphoma," Proceedings of the National Academy of Sciences of the United States of America, vol. 102 no. 1, pp. 175-179, DOI: 10.1073/pnas.0408381102, 2005.
[20] J. R. Burgoyne, H. Mongue-Din, P. Eaton, A. M. Shah, "Redox signaling in cardiac physiology and pathology," Circulation Research, vol. 111 no. 8, pp. 1091-1106, DOI: 10.1161/CIRCRESAHA.111.255216, 2012.
[21] E. A. Liberman, V. P. Topaly, "Permeability of bimolecular phospholipid membranes for fat-soluble ions," Biofizika, vol. 14 no. 3, pp. 452-461, 1969.
[22] R. A. Zinovkin, A. A. Zamyatnin, "Mitochondria-targeted drugs," Current Molecular Pharmacology, vol. 12 no. 3, pp. 202-214, DOI: 10.2174/1874467212666181127151059, 2019.
[23] M. J. Rossman, J. R. Santos-Parker, C. A. C. Steward, N. Z. Bispham, L. M. Cuevas, H. L. Rosenberg, K. A. Woodward, M. Chonchol, R. A. Gioscia-Ryan, M. P. Murphy, D. R. Seals, "Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults," Hypertension, vol. 71 no. 6, pp. 1056-1063, DOI: 10.1161/HYPERTENSIONAHA.117.10787, 2018.
[24] E. J. Gane, F. Weilert, D. W. Orr, G. F. Keogh, M. Gibson, M. M. Lockhart, C. M. Frampton, K. M. Taylor, R. A. J. Smith, M. P. Murphy, "The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients," Liver International, vol. 30 no. 7, pp. 1019-1026, DOI: 10.1111/j.1478-3231.2010.02250.x, 2010.
[25] A. Petrov, N. Perekhvatova, M. Skulachev, L. Stein, G. Ousler, "SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model," Advances in Therapy, vol. 33 no. 1, pp. 96-115, DOI: 10.1007/s12325-015-0274-5, 2016.
[26] N. Apostolova, V. M. Victor, "Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications," Antioxidants & Redox Signaling, vol. 22 no. 8, pp. 686-729, DOI: 10.1089/ars.2014.5952, 2015.
[27] M. F. Ross, G. F. Kelso, F. H. Blaikie, A. M. James, H. M. Cochemé, A. Filipovska, T. da Ros, T. R. Hurd, R. A. J. Smith, M. P. Murphy, "Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology," Biochemistry-Moscow, vol. 70 no. 2, pp. 222-230, DOI: 10.1007/s10541-005-0104-5, 2005.
[28] R. A. Smith, C. M. Porteous, A. M. Gane, M. P. Murphy, "Delivery of bioactive molecules to mitochondria in vivo," Proceedings of the National Academy of Sciences of the United States of America, vol. 100 no. 9, pp. 5407-5412, DOI: 10.1073/pnas.0931245100, 2003.
[29] V. J. Adlam, J. C. Harrison, C. M. Porteous, A. M. James, R. A. J. Smith, M. P. Murphy, I. A. Sammut, "Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury," FASEB Journal, vol. 19 no. 9, pp. 1088-1095, DOI: 10.1096/fj.05-3718com, 2005.
[30] J. Zielonka, J. Joseph, A. Sikora, M. Hardy, O. Ouari, J. Vasquez-Vivar, G. Cheng, M. Lopez, B. Kalyanaraman, "Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications," Chemical Reviews, vol. 117 no. 15, pp. 10043-10120, DOI: 10.1021/acs.chemrev.7b00042, 2017.
[31] L. F. Dong, V. J. Jameson, D. Tilly, J. Cerny, E. Mahdavian, A. Marín-Hernández, L. Hernández-Esquivel, S. Rodríguez-Enríquez, J. Stursa, P. K. Witting, B. Stantic, J. Rohlena, J. Truksa, K. Kluckova, J. C. Dyason, M. Ledvina, B. A. Salvatore, R. Moreno-Sánchez, M. J. Coster, S. J. Ralph, R. A. J. Smith, J. Neuzil, "Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II," Journal of Biological Chemistry, vol. 286 no. 5, pp. 3717-3728, DOI: 10.1074/jbc.M110.186643, 2011.
[32] V. J. A. Jameson, H. M. Cochemé, A. Logan, L. R. Hanton, R. A. J. Smith, M. P. Murphy, "Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants," Tetrahedron, vol. 71 no. 44, pp. 8444-8453, DOI: 10.1016/j.tet.2015.09.014, 2015.
[33] L. E. Bakeeva, I. V. Barskov, M. V. Egorov, N. K. Isaev, V. I. Kapelko, A. V. Kazachenko, V. I. Kirpatovsky, S. V. Kozlovsky, V. L. Lakomkin, S. B. Levina, O. I. Pisarenko, E. Y. Plotnikov, V. B. Saprunova, L. I. Serebryakova, M. V. Skulachev, E. V. Stelmashook, I. M. Studneva, O. V. Tskitishvili, A. K. Vasilyeva, I. V. Victorov, D. B. Zorov, V. P. Skulachev, "Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke)," Biochemistry-Moscow, vol. 73 no. 12, pp. 1288-1299, DOI: 10.1134/S000629790812002X, 2008.
[34] V. P. Skulachev, Y. N. Antonenko, D. A. Cherepanov, B. V. Chernyak, D. S. Izyumov, L. S. Khailova, S. S. Klishin, G. A. Korshunova, K. G. Lyamzaev, O. Y. Pletjushkina, V. A. Roginsky, T. I. Rokitskaya, F. F. Severin, I. I. Severina, R. A. Simonyan, M. V. Skulachev, N. V. Sumbatyan, E. I. Sukhanova, V. N. Tashlitsky, T. A. Trendeleva, M. Y. Vyssokikh, R. A. Zvyagilskaya, "Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs)," Biochimica et Biophysica Acta-Bioenergetics, vol. 1797 no. 6-7, pp. 878-889, DOI: 10.1016/j.bbabio.2010.03.015, 2010.
[35] M. P. Murphy, "Understanding and preventing mitochondrial oxidative damage," Biochemical Society Transactions, vol. 44 no. 5, pp. 1219-1226, DOI: 10.1042/BST20160108, 2016.
[36] J. S. Tauskela, "MitoQ--a mitochondria-targeted antioxidant," IDrugs: the investigational drugs journal, vol. 10 no. 6, pp. 399-412, 2007.
[37] P. G. Finichiu, D. S. Larsen, C. Evans, L. Larsen, T. P. Bright, E. L. Robb, J. Trnka, T. A. Prime, A. M. James, R. A. J. Smith, M. P. Murphy, "A mitochondria-targeted derivative of ascorbate: MitoC," Free Radical Biology and Medicine, vol. 89, pp. 668-678, DOI: 10.1016/j.freeradbiomed.2015.07.160, 2015.
[38] G. F. Kelso, A. Maroz, H. M. Cochemé, A. Logan, T. A. Prime, A. V. Peskin, C. C. Winterbourn, A. M. James, M. F. Ross, S. Brooker, C. M. Porteous, R. F. Anderson, M. P. Murphy, R. A. J. Smith, "A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic," Chemistry & Biology, vol. 19 no. 10, pp. 1237-1246, DOI: 10.1016/j.chembiol.2012.08.005, 2012.
[39] A. Maroz, G. F. Kelso, R. A. J. Smith, D. C. Ware, R. F. Anderson, "Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II) - Pentaazamacrocycle compounds as superoxide dismutase mimetics," Journal of Physical Chemistry A, vol. 112 no. 22, pp. 4929-4935, DOI: 10.1021/jp800690u, 2008.
[40] A. D. Bangham, R. W. Horne, "Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope," Journal of Molecular Biology, vol. 8 no. 5, pp. 660-IN10, DOI: 10.1016/S0022-2836(64)80115-7, 1964.
[41] M. Alipour, A. Omri, M. G. Smith, Z. E. Suntres, "Prophylactic effect of liposomal N-acetylcysteine against LPS-induced liver injuries," Journal of Endotoxin Research, vol. 13 no. 5, pp. 297-304, DOI: 10.1177/0968051907085062, 2016.
[42] R. Rezaei-Sadabady, A. Eidi, N. Zarghami, A. Barzegar, "Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes," Artificial Cells Nanomedicine and Biotechnology, vol. 44 no. 1, pp. 128-134, DOI: 10.3109/21691401.2014.926456, 2014.
[43] J. Fan, P. N. Shek, Z. E. Suntres, Y. H. Li, G. D. Oreopoulos, O. D. Rotstein, "Liposomal antioxidants provide prolonged protection against acute respiratory distress syndrome," Surgery, vol. 128 no. 2, pp. 332-338, DOI: 10.1067/msy.2000.108060, 2000.
[44] S. Koudelka, P. Turanek Knotigova, J. Masek, L. Prochazka, R. Lukac, A. D. Miller, J. Neuzil, J. Turanek, "Liposomal delivery systems for anti-cancer analogues of vitamin E," Journal of Controlled Release, vol. 207, pp. 59-69, DOI: 10.1016/j.jconrel.2015.04.003, 2015.
[45] C. Loguercio, A. Federico, M. Trappoliere, C. Tuccillo, I. . Sio, A. D. Leva, M. Niosi, M. V. D’Auria, R. Capasso, C. D. V. Blanco, Real Sud Group, "The effect of a silybin-vitamin E-phospholipid complex on nonalcoholic fatty liver disease: a pilot study," Digestive Diseases and Sciences, vol. 52 no. 9, pp. 2387-2395, DOI: 10.1007/s10620-006-9703-2, 2007.
[46] M. Takahashi, S. Uechi, K. Takara, Y. Asikin, K. Wada, "Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin," Journal of Agricultural and Food Chemistry, vol. 57 no. 19, pp. 9141-9146, DOI: 10.1021/jf9013923, 2009.
[47] C. H. Chiu, C. C. Chang, S. T. Lin, C. C. Chyau, R. Y. Peng, "Improved hepatoprotective effect of liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity," International Journal of Molecular Sciences, vol. 17 no. 7,DOI: 10.3390/ijms17071128, 2016.
[48] Y. Yasuzaki, Y. Yamada, H. Harashima, "Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes," Biochemical and Biophysical Research Communications, vol. 397 no. 2, pp. 181-186, DOI: 10.1016/j.bbrc.2010.05.070, 2010.
[49] Y. Yamada, H. Harashima, "MITO-Porter for mitochondrial delivery and mitochondrial functional analysis," Pharmacology of Mitochondria, pp. 457-472, 2017.
[50] Y. Yamada, H. Akita, H. Kamiya, K. Kogure, T. Yamamoto, Y. Shinohara, K. Yamashita, H. Kobayashi, H. Kikuchi, H. Harashima, "MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion," Biochimica et Biophysica Acta-Biomembranes, vol. 1778 no. 2, pp. 423-432, DOI: 10.1016/j.bbamem.2007.11.002, 2008.
[51] Y. Yamada, K. Nakamura, J. Abe, M. Hyodo, S. Haga, M. Ozaki, H. Harashima, "Mitochondrial delivery of coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver," Journal of Controlled Release, vol. 213, pp. 86-95, DOI: 10.1016/j.jconrel.2015.06.037, 2015.
[52] Y. Yamada, S. Daikuhara, A. Tamura, K. Nishida, N. Yui, H. Harashima, "Enhanced autophagy inductionviathe mitochondrial delivery of methylated β -cyclodextrin-threaded polyrotaxanes using a MITO-Porter," Chemical Communications, vol. 55 no. 50, pp. 7203-7206, DOI: 10.1039/C9CC03272J, 2019.
[53] Y. Yamada, R. Furukawa, Y. Yasuzaki, H. Harashima, "Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery," Molecular Therapy, vol. 19 no. 8, pp. 1449-1456, DOI: 10.1038/mt.2011.99, 2011.
[54] C. P. Cerrato, M. Pirisinu, E. N. Vlachos, Ü. Langel, "Novel cell-penetrating peptide targeting mitochondria," FASEB Journal, vol. 29 no. 11, pp. 4589-4599, DOI: 10.1096/fj.14-269225, 2015.
[55] S. Toyama, N. Shimoyama, H. H. Szeto, P. W. Schiller, M. Shimoyama, "Protective effect of a mitochondria-targeted peptide against the development of chemotherapy-induced peripheral neuropathy in mice," ACS Chemical Neuroscience, vol. 9 no. 7, pp. 1566-1571, DOI: 10.1021/acschemneuro.8b00013, 2018.
[56] N. Qvit, S. J. S. Rubin, T. J. Urban, D. Mochly-Rosen, E. R. Gross, "Peptidomimetic therapeutics: scientific approaches and opportunities," Drug Discovery Today, vol. 22 no. 2, pp. 454-462, DOI: 10.1016/j.drudis.2016.11.003, 2017.
[57] D. M. A. Oliver, P. H. Reddy, "Small molecules as therapeutic drugs for Alzheimer's disease," Molecular and Cellular Neuroscience, vol. 96, pp. 47-62, DOI: 10.1016/j.mcn.2019.03.001, 2019.
[58] A. Kezic, I. Spasojevic, V. Lezaic, M. Bajcetic, "Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury," Oxidative Medicine and Cellular Longevity, vol. 2016,DOI: 10.1155/2016/2950503, 2016.
[59] E. BÖHMOVÁ, D. MACHOVÁ, M. PECHAR, R. POLA, K. VENCLÍKOVÁ, O. JANOUŠKOVÁ, T. ETRYCH, "Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells," Physiological Research, vol. 67, pp. S267-S279, DOI: 10.33549/physiolres.933975, 2018.
[60] N. N. Alder, W. Mitchell, E. Ng, K. Boyd, J. Tamucci, E. May, N. Eddy, H. Szeto, "Biophysical approaches toward understanding the molecular mechanism of action of the mitochondrial therapeutic SS-31 (elamipretide)," Biophysical Journal, vol. 116 no. 3, pp. 511a-512a, DOI: 10.1016/j.bpj.2018.11.2759, 2019.
[61] S. Galdiero, P. Gomes, "Peptide-based drugs and drug delivery systems," Molecules, vol. 22 no. 12,DOI: 10.3390/molecules22122185, 2017.
[62] H. H. Szeto, "Stealth peptides target cellular powerhouses to fight rare and common age-related diseases," Protein & Peptide Letters, vol. 25 no. 12, pp. 1108-1123, DOI: 10.2174/0929866525666181101105209, 2018.
[63] G. Serviddio, F. Bellanti, J. Sastre, G. Vendemiale, E. Altomare, "Targeting mitochondria: a new promising approach for the treatment of liver diseases," Current Medicinal Chemistry, vol. 17 no. 22, pp. 2325-2337, DOI: 10.2174/092986710791698530, 2010.
[64] T. Imai, K. Mishiro, T. Takagi, A. Isono, H. Nagasawa, K. Tsuruma, M. Shimazawa, H. Hara, "Protective effect of Bendavia (SS-31) against oxygen/glucose-deprivation stress-induced mitochondrial damage in human brain microvascular endothelial cells," Current Neurovascular Research, vol. 14 no. 1, pp. 53-59, DOI: 10.2174/1567202614666161117110609, 2017.
[65] X. Kuang, S. Zhou, W. Guo, Z. Wang, Y. Sun, H. Liu, "SS-31 peptide enables mitochondrial targeting drug delivery: a promising therapeutic alteration to prevent hair cell damage from aminoglycosides," Drug Delivery, vol. 24 no. 1, pp. 1750-1761, DOI: 10.1080/10717544.2017.1402220, 2017.
[66] J. Wu, S. Hao, X. R. Sun, H. Zhang, H. Li, H. Zhao, M. H. Ji, J. J. Yang, K. Li, "Elamipretide (SS-31) ameliorates isoflurane-induced long-term impairments of mitochondrial morphogenesis and cognition in developing rats," Frontiers in Cellular Neuroscience, vol. 11,DOI: 10.3389/fncel.2017.00119, 2017.
[67] M. Zhang, H. Zhao, J. Cai, H. Li, Q. Wu, T. Qiao, K. Li, "Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet," PLoS One, vol. 12 no. 9, article e0185688,DOI: 10.1371/journal.pone.0185688, 2017.
[68] H. Zhao, H. Li, S. Hao, J. Chen, J. Wu, C. Song, M. Zhang, T. Qiao, K. Li, "Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia," Scientific Reports, vol. 7 no. 1,DOI: 10.1038/s41598-017-10320-2, 2017.
[69] H. Zhao, Y. J. Liu, Z. R. Liu, D. D. Tang, X. W. Chen, Y. H. Chen, R. N. Zhou, S. Q. Chen, H. X. Niu, "Role of mitochondrial dysfunction in renal fibrosis promoted by hypochlorite-modified albumin in a remnant kidney model and protective effects of antioxidant peptide SS-31," European Journal of Pharmacology, vol. 804, pp. 57-67, DOI: 10.1016/j.ejphar.2017.03.037, 2017.
[70] J. Cai, Y. Jiang, M. Zhang, H. Zhao, H. Li, K. Li, X. Zhang, T. Qiao, "Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury," Journal of Physiology and Biochemistry, vol. 74 no. 2, pp. 335-343, DOI: 10.1007/s13105-018-0617-1, 2018.
[71] M. D. Campbell, J. Duan, A. T. Samuelson, M. J. Gaffrey, G. E. Merrihew, J. D. Egertson, L. Wang, T. K. Bammler, R. J. Moore, C. C. White, T. J. Kavanagh, J. G. Voss, H. H. Szeto, P. S. Rabinovitch, M. J. MacCoss, W. J. Qian, D. J. Marcinek, "Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice," Free Radical Biology and Medicine, vol. 134, pp. 268-281, DOI: 10.1016/j.freeradbiomed.2018.12.031, 2019.
[72] I. Escribano-Lopez, N. Diaz-Morales, F. Iannantuoni, S. Lopez-Domenech, A. M. de Marañon, Z. Abad-Jimenez, C. Bañuls, S. Rovira-Llopis, J. R. Herance, M. Rocha, V. M. Victor, "The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes," Scientific Reports, vol. 8 no. 1,DOI: 10.1038/s41598-018-34251-8, 2018.
[73] S. Hou, Y. Yang, S. Zhou, X. Kuang, Y. X. Yang, H. Gao, Z. Wang, H. Liu, "Novel SS-31 modified liposomes for improved protective efficacy of minocycline against drug-induced hearing loss," Biomaterials Science, vol. 6 no. 6, pp. 1627-1635, DOI: 10.1039/C7BM01181D, 2018.
[74] S. Tarantini, N. M. Valcarcel-Ares, A. Yabluchanskiy, G. A. Fulop, P. Hertelendy, T. Gautam, E. Farkas, A. Perz, P. S. Rabinovitch, W. E. Sonntag, A. Csiszar, Z. Ungvari, "Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice," Aging Cell, vol. 17 no. 2, article e12731,DOI: 10.1111/acel.12731, 2018.
[75] W. Zhang, J. Tam, K. Shinozaki, T. Yin, J. W. Lampe, L. B. Becker, J. Kim, "Increased survival time with SS-31 after prolonged cardiac arrest in rats," Heart Lung and Circulation, vol. 28 no. 3, pp. 505-508, DOI: 10.1016/j.hlc.2018.01.008, 2019.
[76] A. Czigler, L. Toth, N. Szarka, G. Berta, K. Amrein, E. Czeiter, D. Lendvai-Emmert, K. Bodo, S. Tarantini, A. Koller, Z. Ungvari, A. Buki, P. Toth, "Hypertension exacerbates cerebrovascular oxidative stress induced by mild traumatic brain injury: protective effects of the mitochondria-targeted antioxidative peptide SS-31," Journal of Neurotrauma, vol. 36 no. 23, pp. 3309-3315, DOI: 10.1089/neu.2019.6439, 2019.
[77] Y. Zhu, H. Wang, J. Fang, W. Dai, J. Zhou, X. Wang, M. Zhou, "SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury," Oxidative Medicine and Cellular Longevity, vol. 2018,DOI: 10.1155/2018/4783602, 2018.
[78] K. C. Chatfield, G. C. Sparagna, S. Chau, E. K. Phillips, A. V. Ambardekar, M. Aftab, M. B. Mitchell, C. C. Sucharov, S. D. Miyamoto, B. L. Stauffer, "Elamipretide improves mitochondrial function in the failing human heart," JACC: Basic to Translational Science, vol. 4 no. 2, pp. 147-157, DOI: 10.1016/j.jacbts.2018.12.005, 2019.
[79] M. A. Daubert, E. Yow, G. Dunn, S. Marchev, H. Barnhart, P. S. Douglas, C. O’Connor, S. Goldstein, J. E. Udelson, H. N. Sabbah, "Novel mitochondria-targeting peptide in heart failure Treatment," Circulation-Heart Failure, vol. 10 no. 12, article e004389,DOI: 10.1161/CIRCHEARTFAILURE.117.004389, 2017.
[80] H. N. Sabbah, R. C. Gupta, V. Singh-Gupta, K. Zhang, "Effects of elamipretide on skeletal muscle in dogs with experimentally induced heart failure," ESC Heart Failure, vol. 6 no. 2, pp. 328-335, DOI: 10.1002/ehf2.12408, 2019.
[81] H. N. Sabbah, R. C. Gupta, V. Singh-Gupta, K. Zhang, D. E. Lanfear, "Abnormalities of mitochondrial dynamics in the failing heart: normalization following long-term therapy with elamipretide," Cardiovascular Drugs and Therapy, vol. 32 no. 4, pp. 319-328, DOI: 10.1007/s10557-018-6805-y, 2018.
[82] D. Liu, F. Jin, G. Shu, X. Xu, J. Qi, X. Kang, H. Yu, K. Lu, S. Jiang, F. Han, J. You, Y. du, J. Ji, "Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes," Biomaterials, vol. 211, pp. 57-67, DOI: 10.1016/j.biomaterials.2019.04.034, 2019.
[83] A. Saad, S. M. S. Herrmann, A. Eirin, C. M. Ferguson, J. F. Glockner, H. Bjarnason, M. A. McKusick, S. Misra, L. O. Lerman, S. C. Textor, "Phase 2a clinical trial of mitochondrial protection (elamipretide) during stent revascularization in patients with atherosclerotic renal artery stenosis," Circulation-Cardiovascular Interventions, vol. 10 no. 9, article e005487,DOI: 10.1161/CIRCINTERVENTIONS.117.005487, 2017.
[84] M. T. Sweetwyne, J. W. Pippin, D. G. Eng, K. L. Hudkins, Y. A. Chiao, M. D. Campbell, D. J. Marcinek, C. E. Alpers, H. H. Szeto, P. S. Rabinovitch, S. J. Shankland, "The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age," Kidney International, vol. 91 no. 5, pp. 1126-1145, DOI: 10.1016/j.kint.2016.10.036, 2017.
[85] L. F. Yousif, K. M. Stewart, K. L. Horton, S. O. Kelley, "Mitochondria-penetrating peptides: sequence effects and model cargo transport," Chembiochem, vol. 10 no. 12, pp. 2081-2088, DOI: 10.1002/cbic.200900017, 2009.
[86] A. Polyzos, A. Holt, C. Brown, C. Cosme, P. Wipf, A. Gomez-Marin, M. R. Castro, S. Ayala-Peña, C. T. McMurray, "Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes," Human Molecular Genetics, vol. 25 no. 9, pp. 1792-1802, DOI: 10.1093/hmg/ddw051, 2016.
[87] A. A. Polyzos, N. I. Wood, P. Williams, P. Wipf, A. J. Morton, C. T. McMurray, "XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington's disease is age- and sex- dependent," PLoS One, vol. 13 no. 4, article e0194580,DOI: 10.1371/journal.pone.0194580, 2018.
[88] Z. Xun, S. Rivera-Sánchez, S. Ayala-Peña, J. Lim, H. Budworth, E. M. Skoda, P. D. Robbins, L. J. Niedernhofer, P. Wipf, C. T. McMurray, "Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease," Cell Reports, vol. 2 no. 5, pp. 1137-1142, DOI: 10.1016/j.celrep.2012.10.001, 2012.
[89] T. Krainz, M. M. Gaschler, C. Lim, J. R. Sacher, B. R. Stockwell, P. Wipf, "A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis," ACS Central Science, vol. 2 no. 9, pp. 653-659, DOI: 10.1021/acscentsci.6b00199, 2016.
[90] S. R. Subramaniam, M. F. Chesselet, "Mitochondrial dysfunction and oxidative stress in Parkinson's disease," Progress in Neurobiology, vol. 106-107, pp. 17-32, DOI: 10.1016/j.pneurobio.2013.04.004, 2013.
[91] A. Negida, A. Menshawy, G. el Ashal, Y. Elfouly, Y. Hani, Y. Hegazy, S. el ghonimy, S. Fouda, Y. Rashad, "Coenzyme Q10 for patients with Parkinson's disease: a systematic review and meta-analysis," CNS & Neurological Disorders-Drug Targets, vol. 15 no. 1, pp. 45-53, DOI: 10.2174/1871527314666150821103306, 2016.
[92] B. J. Snow, F. L. Rolfe, M. M. Lockhart, C. M. Frampton, J. D. O'Sullivan, V. Fung, R. A. Smith, M. P. Murphy, K. M. Taylor, Protect Study Group, "A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease," Movement Disorders, vol. 25 no. 11, pp. 1670-1674, DOI: 10.1002/mds.23148, 2010.
[93] A. Ghosh, K. Chandran, S. V. Kalivendi, J. Joseph, W. E. Antholine, C. J. Hillard, A. Kanthasamy, A. Kanthasamy, B. Kalyanaraman, "Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model," Free Radical Biology and Medicine, vol. 49 no. 11, pp. 1674-1684, DOI: 10.1016/j.freeradbiomed.2010.08.028, 2010.
[94] L. Yang, K. Zhao, N. Y. Calingasan, G. Luo, H. H. Szeto, M. F. Beal, "Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity," Antioxidants & Redox Signaling, vol. 11 no. 9, pp. 2095-2104, DOI: 10.1089/ars.2009.2445, 2009.
[95] L. Mursaleen, B. Noble, S. H. Y. Chan, S. Somavarapu, M. G. Zariwala, "N-Acetylcysteine nanocarriers protect against oxidative stress in a cellular model of Parkinson's disease," Antioxidants, vol. 9 no. 7,DOI: 10.3390/antiox9070600, 2020.
[96] H. Jin, A. Kanthasamy, A. Ghosh, V. Anantharam, B. Kalyanaraman, A. G. Kanthasamy, "Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes," Biochimica et Biophysica Acta, vol. 1842 no. 8, pp. 1282-1294, DOI: 10.1016/j.bbadis.2013.09.007, 2014.
[97] Y. Xi, D. Feng, K. Tao, R. Wang, Y. Shi, H. Qin, M. P. Murphy, Q. Yang, G. Zhao, "MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1 α," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1864 no. 9, pp. 2859-2870, DOI: 10.1016/j.bbadis.2018.05.018, 2018.
[98] R. Fernández-Gajardo, J. M. Matamala, R. Carrasco, R. Gutiérrez, R. Melo, R. Rodrigo, "Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement," CNS Drugs, vol. 28 no. 3, pp. 229-248, DOI: 10.1007/s40263-013-0138-y, 2014.
[99] V. Calabrese, R. Lodi, C. Tonon, V. D'Agata, M. Sapienza, G. Scapagnini, A. Mangiameli, G. Pennisi, A. M. G. Stella, D. A. Butterfield, "Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia," Journal of Neurological Sciences, vol. 233 no. 1-2, pp. 145-162, DOI: 10.1016/j.jns.2005.03.012, 2005.
[100] C. B. Pointer, A. Klegeris, "Cardiolipin in central nervous system physiology and pathology," Cellular and Molecular Neurobiology, vol. 37 no. 7, pp. 1161-1172, DOI: 10.1007/s10571-016-0458-9, 2017.
[101] Q. Shen, J. B. Hiebert, J. Hartwell, A. R. Thimmesch, J. D. Pierce, "Systematic review of traumatic brain injury and the impact of antioxidant therapy on clinical outcomes," Worldviews on Evidence-Based Nursing, vol. 13 no. 5, pp. 380-389, DOI: 10.1111/wvn.12167, 2016.
[102] A. Singh, R. Kukreti, L. Saso, S. Kukreti, "Oxidative stress: a key modulator in neurodegenerative diseases," Molecules, vol. 24 no. 8,DOI: 10.3390/molecules24081583, 2019.
[103] M. E. Hoffer, C. Balaban, M. D. Slade, J. W. Tsao, B. Hoffer, "Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study," PLoS One, vol. 8 no. 1, article e54163,DOI: 10.1371/journal.pone.0054163, 2013.
[104] R. S. B. Clark, P. E. Empey, H. Bayır, B. L. Rosario, S. M. Poloyac, P. M. Kochanek, T. D. Nolin, A. K. Au, C. M. Horvat, S. R. Wisniewski, M. J. Bell, "Phase I randomized clinical trial of N-acetylcysteine in combination with an adjuvant probenecid for treatment of severe traumatic brain injury in children," PLoS One, vol. 12 no. 7, article e0180280,DOI: 10.1371/journal.pone.0180280, 2017.
[105] F. T. Hagos, P. E. Empey, P. Wang, X. Ma, S. M. Poloyac, H. Bayir, P. M. Kochanek, M. J. Bell, R. S. B. Clark, "Exploratory application of neuropharmacometabolomics in severe childhood traumatic brain injury," Critical Care Medicine, vol. 46 no. 9, pp. 1471-1479, DOI: 10.1097/CCM.0000000000003203, 2018.
[106] N. K. Isaev, S. V. Novikova, E. V. Stelmashook, I. V. Barskov, D. N. Silachev, L. G. Khaspekov, V. P. Skulachev, D. B. Zorov, "Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat," Biochemistry (Mosc), vol. 77 no. 9, pp. 996-999, DOI: 10.1134/S0006297912090052, 2012.
[107] E. E. Genrikhs, E. V. Stelmashook, O. P. Alexandrova, S. V. Novikova, D. N. Voronkov, Y. A. Glibka, V. P. Skulachev, N. K. Isaev, "The single intravenous administration of mitochondria-targeted antioxidant SkQR1 after traumatic brain injury attenuates neurological deficit in rats," Brain Research Bulletin, vol. 148, pp. 100-108, DOI: 10.1016/j.brainresbull.2019.03.011, 2019.
[108] J. Ji, A. E. Kline, A. Amoscato, A. K. Samhan-Arias, L. J. Sparvero, V. A. Tyurin, Y. Y. Tyurina, B. Fink, M. D. Manole, A. M. Puccio, D. O. Okonkwo, J. P. Cheng, H. Alexander, R. S. B. Clark, P. M. Kochanek, P. Wipf, V. E. Kagan, H. Bayır, "Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury," Nature Neuroscience, vol. 15 no. 10, pp. 1407-1413, DOI: 10.1038/nn.3195, 2012.
[109] N. Szarka, M. R. Pabbidi, K. Amrein, E. Czeiter, G. Berta, K. Pohoczky, Z. Helyes, Z. Ungvari, A. Koller, A. Buki, P. Toth, "Traumatic brain injury impairs myogenic constriction of cerebral arteries: role of mitochondria-derived H2O2and TRPV4-dependent activation of BKcaChannels," Journal of Neurotrauma, vol. 35 no. 7, pp. 930-939, DOI: 10.1089/neu.2017.5056, 2018.
[110] J. Zhou, H. Wang, R. Shen, J. Fang, Y. Yang, W. Dai, Y. Zhu, M. Zhou, "Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway," American Journal of Translational Research, vol. 10 no. 6, pp. 1887-1899, 2018.
[111] F. Sam, D. L. Kerstetter, D. R. Pimental, S. Mulukutla, A. Tabaee, M. R. Bristow, W. S. Colucci, D. B. Sawyer, "Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium," Journal of Cardiac Failure, vol. 11 no. 6, pp. 473-480, DOI: 10.1016/j.cardfail.2005.01.007, 2005.
[112] D. Montaigne, X. Marechal, A. Coisne, N. Debry, T. Modine, G. Fayad, C. Potelle, J. M. el Arid, S. Mouton, Y. Sebti, H. Duez, S. Preau, I. Remy-Jouet, F. Zerimech, M. Koussa, V. Richard, R. Neviere, J. L. Edme, P. Lefebvre, B. Staels, "Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients," Circulation, vol. 130 no. 7, pp. 554-564, DOI: 10.1161/CIRCULATIONAHA.113.008476, 2014.
[113] D. F. Dai, T. Chen, H. Szeto, M. Nieves-Cintrón, V. Kutyavin, L. F. Santana, P. S. Rabinovitch, "Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy," Journal of the American College of Cardiology, vol. 58 no. 1, pp. 73-82, DOI: 10.1016/j.jacc.2010.12.044, 2011.
[114] M. Canton, S. Menazza, F. L. Sheeran, P. Polverino de Laureto, F. di Lisa, S. Pepe, "Oxidation of myofibrillar proteins in human heart failure," Journal of the American College of Cardiology, vol. 57 no. 3, pp. 300-309, DOI: 10.1016/j.jacc.2010.06.058, 2011.
[115] Y. Kono, K. Nakamura, H. Kimura, N. Nishii, A. Watanabe, K. Banba, A. Miura, S. Nagase, S. Sakuragi, K. F. Kusano, H. Matsubara, T. Ohe, "Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure," Circulation Journal, vol. 70 no. 8, pp. 1001-1005, DOI: 10.1253/circj.70.1001, 2006.
[116] Z. Mallat, I. Philip, M. Lebret, D. Chatel, J. Maclouf, A. Tedgui, "Elevated levels of 8-iso-prostaglandin F2 α in pericardial fluid of patients with heart failure," Circulation, vol. 97 no. 16, pp. 1536-1539, DOI: 10.1161/01.CIR.97.16.1536, 1998.
[117] A. E. Vendrov, M. D. Stevenson, S. Alahari, H. Pan, S. A. Wickline, N. R. Madamanchi, M. S. Runge, "Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice," Journal of the American Heart Association, vol. 6 no. 11,DOI: 10.1161/JAHA.117.006775, 2017.
[118] M. Conrad, C. Jakupoglu, S. G. Moreno, S. Lippl, A. Banjac, M. Schneider, H. Beck, A. K. Hatzopoulos, U. Just, F. Sinowatz, W. Schmahl, K. R. Chien, W. Wurst, G. W. Bornkamm, M. Brielmeier, "Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function," Molecular and Cell Biology, vol. 24 no. 21, pp. 9414-9423, DOI: 10.1128/MCB.24.21.9414-9423.2004, 2004.
[119] B. K. Ooi, B. H. Goh, W. H. Yap, "Oxidative stress in cardiovascular diseases: involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation," International Journal of Molecular Sciences, vol. 18 no. 11,DOI: 10.3390/ijms18112336, 2017.
[120] V. I. Zozina, S. Covantev, O. A. Goroshko, L. M. Krasnykh, V. G. Kukes, "Coenzyme Q10 in cardiovascular and metabolic diseases: current state of the problem," Current Cardiology Reviews, vol. 14 no. 3, pp. 164-174, DOI: 10.2174/1573403X14666180416115428, 2018.
[121] Q. Jiang, H. Zhang, R. Yang, Q. Hui, Y. Chen, L. Mats, R. Tsao, C. Yang, "Red-osier dogwood extracts prevent inflammatory responses in Caco-2 cells and a Caco-2 BBe1/EA.hy926 cell co-culture model," Antioxidants, vol. 8 no. 10,DOI: 10.3390/antiox8100428, 2019.
[122] A. W. Ashor, R. Brown, P. D. Keenan, N. D. Willis, M. Siervo, J. C. Mathers, "Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses," Nutrition Research, vol. 61,DOI: 10.1016/j.nutres.2018.08.005, 2019.
[123] E. Sozen, T. Demirel, N. K. Ozer, "Vitamin E: regulatory role in the cardiovascular system," IUBMB Life, vol. 71 no. 4, pp. 507-515, DOI: 10.1002/iub.2020, 2019.
[124] A. K. Chakrabarti, K. Feeney, C. Abueg, D. A. Brown, E. Czyz, M. Tendera, A. Janosi, R. P. Giugliano, R. A. Kloner, W. D. Weaver, C. Bode, J. Godlewski, B. Merkely, C. M. Gibson, "Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction," American Heart Journal, vol. 165 no. 4, pp. 509-514.e7, DOI: 10.1016/j.ahj.2012.12.008, 2013.
[125] Y. Ma, Z. Y. Huang, Z. L. Zhou, X. He, Y. Wang, C. Meng, G. Huang, N. Fang, "A novel antioxidant Mito-Tempol inhibits ox-LDL-induced foam cell formation through restoration of autophagy flux," Free Radical Biology and Medicine, vol. 129, pp. 463-472, DOI: 10.1016/j.freeradbiomed.2018.10.412, 2018.
[126] C. Methner, E. T. Chouchani, G. Buonincontri, V. R. Pell, S. J. Sawiak, M. P. Murphy, T. Krieg, "Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts," European Journal of Heart Failure, vol. 16 no. 7, pp. 712-717, DOI: 10.1002/ejhf.100, 2014.
[127] V. N. Manskikh, O. S. Gancharova, A. I. Nikiforova, M. S. Krasilshchikova, I. G. Shabalina, M. V. Egorov, E. M. Karger, G. E. Milanovsky, I. I. Galkin, V. P. Skulachev, R. A. Zinovkin, "Age-associated murine cardiac lesions are attenuated by the mitochondria-targeted antioxidant SkQ1," Histology and Histopathology, vol. 30 no. 3, pp. 353-360, DOI: 10.14670/HH-30.353, 2015.
[128] R. F. Ribeiro Junior, E. R. Dabkowski, K. C. Shekar, K. A. O´Connell, P. A. Hecker, M. P. Murphy, "MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload," Free Radical Biology and Medicine, vol. 117, pp. 18-29, DOI: 10.1016/j.freeradbiomed.2018.01.012, 2018.
[129] K. Y. Goh, L. He, J. Song, M. Jinno, A. J. Rogers, P. Sethu, G. V. Halade, N. S. Rajasekaran, X. Liu, S. D. Prabhu, V. Darley-Usmar, A. R. Wende, L. Zhou, "Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice," Redox Biology, vol. 21, article 101100,DOI: 10.1016/j.redox.2019.101100, 2019.
[130] M. M. Aljunaidy, J. S. Morton, R. Kirschenman, T. Phillips, C. P. Case, C. L. M. Cooke, S. T. Davidge, "Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia," Pharmaceutical Research, vol. 134, pp. 332-342, DOI: 10.1016/j.phrs.2018.05.006, 2018.
[131] R. A. Gioscia-Ryan, M. L. Battson, L. M. Cuevas, J. S. Eng, M. P. Murphy, D. R. Seals, "Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice," Journal of applied physiology : respiratory, environmental and exercise physiology, vol. 124 no. 5, pp. 1194-1202, DOI: 10.1152/japplphysiol.00670.2017, 2018.
[132] A. Dhanasekaran, S. Kotamraju, S. V. Kalivendi, T. Matsunaga, T. Shang, A. Keszler, J. Joseph, B. Kalyanaraman, "Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis," The Journal of Biological Chemistry, vol. 279 no. 36, pp. 37575-37587, DOI: 10.1074/jbc.M404003200, 2004.
[133] J. Cho, K. Won, D. Wu, Y. Soong, S. Liu, H. H. Szeto, M. K. Hong, "Potent mitochondria-targeted peptides reduce myocardial infarction in rats," Coronary Artery Disease, vol. 18 no. 3, pp. 215-220, DOI: 10.1097/01.mca.0000236285.71683.b6, 2007.
[134] B. Kalyanaraman, G. Cheng, M. Hardy, O. Ouari, B. Bennett, J. Zielonka, "Teaching the basics of reactive oxygen species and their relevance to cancer biology: mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies," Redox Biology, vol. 15, pp. 347-362, DOI: 10.1016/j.redox.2017.12.012, 2018.
[135] Y. H. Yang, S. Karakhanova, W. Hartwig, J. G. D'Haese, P. P. Philippov, J. Werner, A. V. Bazhin, "Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy," Journal of Cellular Physiology, vol. 231 no. 12, pp. 2570-2581, DOI: 10.1002/jcp.25349, 2016.
[136] F. Weinberg, R. Hamanaka, W. W. Wheaton, S. Weinberg, J. Joseph, M. Lopez, B. Kalyanaraman, G. M. Mutlu, G. R. S. Budinger, N. S. Chandel, "Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity," Proceedings of the National Academy of Sciences of the United States of America, vol. 107 no. 19, pp. 8788-8793, DOI: 10.1073/pnas.1003428107, 2010.
[137] M. J. Morgan, Z. G. Liu, "Crosstalk of reactive oxygen species and NF- κ B signaling," Cell Research, vol. 21 no. 1, pp. 103-115, DOI: 10.1038/cr.2010.178, 2011.
[138] S. Fulda, L. Galluzzi, G. Kroemer, "Targeting mitochondria for cancer therapy," Nature Reviews Drug Discovery, vol. 9 no. 6, pp. 447-464, DOI: 10.1038/nrd3137, 2010.
[139] E. L. Zhang, C. Zhang, Y. P. Su, T. Cheng, C. Shi, "Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy," Drug Discovery Today, vol. 16 no. 3-4, pp. 140-146, DOI: 10.1016/j.drudis.2010.12.006, 2011.
[140] X. H. Cao, L. Y. Fang, S. Gibbs, Y. Huang, Z. Dai, P. Wen, X. Zheng, W. Sadee, D. Sun, "Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia," Cancer Chemotherapy and Pharmacology, vol. 59 no. 4, pp. 495-505, DOI: 10.1007/s00280-006-0291-9, 2007.
[141] E. Titova, G. Shagieva, O. Ivanova, L. Domnina, M. Domninskaya, O. Strelkova, N. Khromova, P. Kopnin, B. Chernyak, V. Skulachev, V. Dugina, "Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth," Cell Cycle, vol. 17 no. 14, pp. 1797-1811, DOI: 10.1080/15384101.2018.1496748, 2018.
[142] L. S. Agapova, B. V. Chernyak, L. V. Domnina, V. B. Dugina, A. Y. Efimenko, E. K. Fetisova, O. Y. Ivanova, N. I. Kalinina, N. V. Khromova, B. P. Kopnin, P. B. Kopnin, M. V. Korotetskaya, M. R. Lichinitser, A. L. Lukashev, O. Y. Pletjushkina, E. N. Popova, M. V. Skulachev, G. S. Shagieva, E. V. Stepanova, E. V. Titova, V. A. Tkachuk, J. M. Vasiliev, V. P. Skulachev, "Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells," Biochemistry-Moscow, vol. 73 no. 12, pp. 1300-1316, DOI: 10.1134/S0006297908120031, 2008.
[143] E. K. Fetisova, M. S. Muntyan, K. G. Lyamzaev, B. V. Chernyak, "Therapeutic effect of the mitochondria-targeted antioxidant SkQ1 on the culture model of multiple sclerosis," Oxidative Medicine and Cellular Longevity, vol. 2019,DOI: 10.1155/2019/2082561, 2019.
[144] I. V. Anikin, I. G. Popovich, M. L. Tyndyk, M. A. Zabezhinskiĭ, M. N. Iurova, V. P. Skulachëv, V. N. Anisimov, "Effect of plastoquinone derivative SkQ1 on benzo(a)pyrene-induced soft tissue carcinogenesis," Voprosy Onkologii, vol. 59 no. 1, pp. 89-93, 2013.
[145] W. Zhan, X. Liao, L. H. Li, Z. Chen, T. Tian, L. Yu, Z. Chen, "In vitro mitochondrial-targeted antioxidant peptide induces apoptosis in cancer cells," Oncotargets and Therapy, vol. Volume 12, pp. 7297-7306, DOI: 10.2147/OTT.S207640, 2019.
[146] S. Shetty, R. Kumar, S. Bharati, "Mito-TEMPO, a mitochondria-targeted antioxidant, prevents N-nitrosodiethylamine-induced hepatocarcinogenesis in mice," Free Radical Biology and Medicine, vol. 136, pp. 76-86, DOI: 10.1016/j.freeradbiomed.2019.03.037, 2019.
[147] F. Vazquez, J. H. Lim, H. Chim, K. Bhalla, G. Girnun, K. Pierce, C. B. Clish, S. R. Granter, H. R. Widlund, B. M. Spiegelman, P. Puigserver, "PGC1 α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress," Cancer Cell, vol. 23 no. 3, pp. 287-301, DOI: 10.1016/j.ccr.2012.11.020, 2013.
[148] B. B. Wang, J. Fu, T. Yu, A. Xu, W. Qin, Z. Yang, Y. Chen, H. Wang, "Contradictory effects of mitochondria- and non-mitochondria-targeted antioxidants on hepatocarcinogenesis by altering DNA repair in mice," Hepatology, vol. 67 no. 2, pp. 623-635, DOI: 10.1002/hep.29518, 2017.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Qian Jiang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Mitochondria are the main organelles that produce adenosine 5
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory of Feed Biotechnology, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China
2 Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
3 College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
4 Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China