Full text

Turn on search term navigation

Copyright © 2020 Xing Zeng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

As the 2 m thick compacted clay liner with permeability coefficient of 1 × 10−7 cm/s is required in the Chinese technical specifications about landfill, the performance of this compacted clay liner was analyzed considering three different adsorption isotherms (convex, straight, and concave). The effects of source concentration, adsorption mode, and waterhead on the breakthrough curve and breakthrough time of Pb2+ were discussed. The results indicate that reducing the concentration of pollution sources is beneficial to prolonging the breakthrough time. With the waterhead of 10 m, the absolute breakthrough time, respectively, increased from 2.77 to 3.7 years (concave type isotherm), from 17.63 to 26.58 years (straight type isotherm), and from 35.43 to 59.6 years (convex type isotherm), as the source concentration decreased from 1000 mg/L to 10 mg/L. The effect of adsorption isotherm type on the performance of the barrier is very obvious: with the waterhead of 10 m, the absolute breakthrough time corresponding to the convex isotherm is more than twice that of the straight adsorption isotherm, and more than 12.8 times that of the concave isotherm. The absolute breakthrough time corresponding to 0.3 m waterhead is more than 4 times that of 10 m, and reducing the waterhead can effectively increase the breakthrough time.

Details

Title
The Breakthrough Time Analyses of Lead Ions in CCL considering Different Adsorption Isotherms
Author
Zeng, Xing 1   VIAFID ORCID Logo  ; Liu, Xi 2   VIAFID ORCID Logo  ; Yu-heng, Li 2   VIAFID ORCID Logo 

 Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China 
 Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China 
Editor
Hugo Rodrigues
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2474914402
Copyright
Copyright © 2020 Xing Zeng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/