It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h−1) and stability (TON up to 200 000) at loadings as low as 5-200 ppm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Faculty of Applied Sciences, Delft University of Technology, Inorganic Systems Engineering group, Department of Chemical Engineering, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740)
2 ITMO University, TheoMAT Group, ChemBio cluster, Petersburg, Russia (GRID:grid.35915.3b) (ISNI:0000 0001 0413 4629)
3 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836)