Abstract

We investigate the microscopic mechanism of ultralow lattice thermal conductivity (κl) of TlInTe2 and its weak temperature dependence using a unified theory of lattice heat transport, that considers contributions arising from the particle-like propagation as well as wave-like tunneling of phonons. While we use the Peierls–Boltzmann transport equation (PBTE) to calculate the particle-like contributions (κl(PBTE)), we explicitly calculate the off-diagonal (OD) components of the heat-flux operator within a first-principles density functional theory framework to determine the contributions (κl(OD)) arising from the wave-like tunneling of phonons. At each temperature, T, we anharmonically renormalize the phonon frequencies using the self-consistent phonon theory including quartic anharmonicity, and utilize them to calculate κl(PBTE) and κl(OD). With the combined inclusion of κl(PBTE), κl(OD), and additional grain-boundary scatterings, our calculations successfully reproduce the experimental results. Our analysis shows that large quartic anharmonicity of TlInTe2 (a) strongly hardens the low-energy phonon branches, (b) diminishes the three-phonon scattering processes at finite T, and (c) recovers the weaker than T−1 decay of the measured κl.

Details

Title
Microscopic mechanism of unusual lattice thermal transport in TlInTe2
Author
Pal Koushik 1   VIAFID ORCID Logo  ; Xia, Yi 1   VIAFID ORCID Logo  ; Wolverton, Chris 1   VIAFID ORCID Logo 

 Northwestern University, Department of Materials Science and Engineering, Evanston, USA (GRID:grid.16753.36) (ISNI:0000 0001 2299 3507) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2475016934
Copyright
© The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.