It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Regenerative medicine: Manipulating modifications that control bone-building
Therapies that modulate the activity of the regulatory protein RUNX2 could potentially restore normal bone development in a range of skeletal disorders, and repair damage from injury or degeneration. RUNX2 is an essential regulator of genes that drive formation of bone-producing osteoblast cells. It can be activated or inactivated by the enzymatic addition of various chemical groups. Hyun-Mo Ryoo and colleagues at Seoul National University, South Korea, review the role of such modifications in bone disorders. For example, the loss of modifications activated by RUNX2 can result in delayed integration of the bones that form the skull. The authors highlight potential opportunities to manipulate these modification processes to treat this and other developmental disorders. Similar strategies could also promote repair of fractures or counter osteoporotic bone loss.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Seoul National University, Basic Research Lab for “Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)”, Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul, South Korea (GRID:grid.31501.36) (ISNI:0000 0004 0470 5905)