Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

How to support massive access efficiently is one of the challenges in the future Internet of Things (IoT) systems. To address such challenge, this paper proposes an effective preamble collision resolution scheme to sustain massive random access (RA) for an IoT system. Specifically, a new sub-preamble structure is first proposed to reduce the preamble collision probability. To identify different devices that send the same preamble to the gNB on the same physical random access channel (PRACH), a multiple timing advance (TA) capturing scheme is then proposed. Thereafter, an RA scheme is designed to sustain massive access and the performance of the scheme is studied analytically. Finally, the effectiveness of the proposed RA scheme is validated by extensive simulation experiments in terms of preamble detection probability, preamble collision probability, RA success probability, resource efficiency and TA capturing.

Details

Title
Preamble Design and Collision Resolution in a Massive Access IoT System
First page
250
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2475703827
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.