It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Immunotherapy is expected to become the most promising new treatment for ovarian cancer owing to its immunogenicity. However, immunosuppression in the tumor microenvironment is a major obstacle to the efficacy of tumor therapy. Studies have found different metabolism ways of regulatory T cells (Tregs) in the cancer environment may be related to the immunosuppression and Toll-like receptor 8 (TLR8) can reverse the suppression function of Tregs. But it is still unclear that if the TLR8-mediated function reversal is associated with the change of glucose metabolism of Tregs. It was found that the positive expression rates of Glut1, HIF-1α, and Ki67 in CD4+ Treg cells of OC were significantly higher than that in benign ovarian tumor and HC, and also significantly higher than that in CD4+ Teffs of OC. What’s more, compared with CD4+ Teff group, CD4+ Tregs highly expressed seven genes and three proteins related to glucose metabolism and had higher levels of glucose uptake and glycolysis. After activating TLR8 signal of CD4+ Tregs, the proliferation level of naive CD4+ T cells was higher than that of the control group. At the same time, the expression levels of eight genes and five proteins related to glucose metabolism in CD4+ Treg cells with TLR8 activated were decreased and levels of glucose uptake and glycolysis were also lower. Furthermore, TLR8 signaling also downregulated the mTOR pathway in CD4+ Tregs. CD4+ Tregs pretreated with 2-deoxy-d-Glucose (2-DG) and galloflavin also attenuated the inhibition of Teffs proliferation. Although CD4+ Tregs pretreated with 2-DG and galloflavin before activating TLR8 signal had no significant difference compared with the group only treated with inhibitors, which suggested TLR8-mediated reversal of CD4+ Treg cells inhibitory function in ovarian cancer cells co-cultured microenvironment had a causal relationship with glucose metabolism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 the First Affiliated Hospital of Nanjing Medical University, Department of Laboratory Medicine, Nanjing, China (GRID:grid.412676.0) (ISNI:0000 0004 1799 0784); National Key Clinical Department of Laboratory Medicine, Nanjing, China (GRID:grid.412676.0)