Abstract

Metal anode instability, including dendrite growth, metal corrosion, and hetero-ions interference, occurring at the electrolyte/electrode interface of aqueous batteries, are among the most critical issues hindering their widespread use in energy storage. Herein, a universal strategy is proposed to overcome the anode instability issues by rationally designing alloyed materials, using Zn-M alloys as model systems (M = Mn and other transition metals). An in-situ optical visualization coupled with finite element analysis is utilized to mimic actual electrochemical environments analogous to the actual aqueous batteries and analyze the complex electrochemical behaviors. The Zn-Mn alloy anodes achieved stability over thousands of cycles even under harsh electrochemical conditions, including testing in seawater-based aqueous electrolytes and using a high current density of 80 mA cm−2. The proposed design strategy and the in-situ visualization protocol for the observation of dendrite growth set up a new milestone in developing durable electrodes for aqueous batteries and beyond.

Metal anode instability due to several intrinsic factors limits their widespread use in energy storage. Here, the authors report a 3D alloy anode via a universal alloy electrodeposition approach to overcome the anode instability issues and demonstrate a seawater-based aqueous battery.

Details

Title
Stable, high-performance, dendrite-free, seawater-based aqueous batteries
Author
Tian Huajun 1 ; Zhao, Li 1 ; Feng Guangxia 2 ; Yang, Zhenzhong 3 ; Fox, David 4 ; Wang Maoyu 5 ; Zhou, Hua 6   VIAFID ORCID Logo  ; Zhai Lei 4 ; Kushima Akihiro 7   VIAFID ORCID Logo  ; Du Yingge 3   VIAFID ORCID Logo  ; Feng Zhenxing 5   VIAFID ORCID Logo  ; Shan Xiaonan 2 ; Yang, Yang 8   VIAFID ORCID Logo 

 NanoScience Technology Center, University of Central Florida, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
 Electrical and Computer Engineering Department, W306, Engineering Building 2, University of Houston, Houston, USA (GRID:grid.266436.3) (ISNI:0000 0004 1569 9707) 
 Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, USA (GRID:grid.451303.0) (ISNI:0000 0001 2218 3491) 
 NanoScience Technology Center, University of Central Florida, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859); University of Central Florida, Department of Chemistry, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
 School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, USA (GRID:grid.4391.f) (ISNI:0000 0001 2112 1969) 
 X-ray Science Division, Argonne National Laboratory, Lemont, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 NanoScience Technology Center, University of Central Florida, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859); University of Central Florida, Department of Materials Science and Engineering, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859); University of Central Florida, Advanced Materials Processing and Analysis Center, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
 NanoScience Technology Center, University of Central Florida, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859); University of Central Florida, Department of Materials Science and Engineering, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859); University of Central Florida, Energy Conversion and Propulsion Cluster, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2476743716
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.