Abstract

The prediction of flow around a high-speed train subjected to different windbreak walls and yaw angles has been investigated using steady Shear Stress Transport (SST) k-ω turbulence model at the Reynolds number of 1.0×106 based on the height of the scaled train model. The results show that an effective windbreak wall provide a favourable shielding effect for the train behind it, and force the primary positive pressure on the windward of the train to transfer on the wall. Consequently, the airflow cannot directly act on the train body, and the train is basically in an environment with small negative pressure. The inclined slope (the earth embankment type) windbreak wall shows poor anti-wind performance that should not be used along the new high-speed railways. When designing the windbreak wall, the influences of yaw angles should be taken into account.

Details

Title
Numerical Simulation of Flow around a High-Speed Train Subjected to Different Windbreak Walls and Yaw Angles
Author
Zhang, J; K. He; Wang, J; Liu, T; Liang, X; Gao, G
Pages
1137-1149
Publication year
2019
Publication date
Jul 2019
Publisher
Isfahan University of Technology
ISSN
1735-3572
e-ISSN
1735-3645
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2477271364
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.