Abstract

Numerical experiments were carried out on the high speed driven cavity flows in 2D curved channels to investigate mainly the pressure field. A density-based algorithm in ANSYS Fluent 13.0 was used in the present URANS simulations. The SST k- ω model was used for modeling the turbulence within an unstructured mesh solver. Validation of the numerical code was accomplished, and the results showed a good agreement between the numerical simulation and experimental data. Three channels (straight, concave and convex) with a nominal height of H = 4 × 10 −3 m under the transonic flow conditions were considered in the study. The cavity studied is L = 12 × 10 −3 m long with the depth ranging from D = 12 × 10 −3 m to 48 × 10 −3 m to obtain the length-to-depth ratios of L /D=1 to 1 /4. The study comprised the analysis of the cavity surface pressures and the associated flow structures. The channel configuration influenced the cavity flowfield, and that influence finally resulted in a change in the surface pressure fluctuations in the cavity. The deep cavity attenuated the flowfield oscillation inside the cavity.

Details

Title
Numerical Analysis of the High Speed Driven Cavity Flow in 2-D Curved Channel
Author
Alam, M M A; Setoguchi, T; Takao, M; Kim, H D
Pages
529-536
Publication year
2016
Publication date
Mar 2016
Publisher
Isfahan University of Technology
ISSN
1735-3572
e-ISSN
1735-3645
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2477323438
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.