Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The global explosion of the COVID-19 pandemic has created worldwide unprecedented health and economic challenges which stimulated one of the biggest annual migrations globally. In the Indian context, even after proactive decisions taken by the Government, the continual growth of COVID-19 raises questions regarding its extent and severity. The present work utilizes the susceptible-infected-recovered-death (SIRD) compartment model for parameter estimation and fruitful prediction of COVID-19. Further, various optimization techniques such as particle swarm optimization (PSO), gradient (G), pattern search (PS) and their hybrid are employed to solve the considered model. The simulation study endorse the efficiency of PSO (with or without G) and G+PS+G over other techniques for ongoing pandemic assessment. The key parametric values including characteristic time of infection and death and reproduction number have been estimated as 60 days, 67 days and 4.78 respectively by utilizing the optimum results. The model assessed that India has passed its peak duration of COVID-19 with more than 81% recovery and only a 1.59% death rate. The short duration analysis (15 days) of obtained results against reported data validates the effectiveness of the developed models for ongoing pandemic assessment.

Details

Title
Data Analytics and Mathematical Modeling for Simulating the Dynamics of COVID-19 Epidemic—A Case Study of India
First page
127
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2477390432
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.